화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.9, No.3, 219-224, May, 2003
Thermal Decomposition Kinetics of Polymeric Wastes Using a Nonisothermal Thermogravimetric Method
E-mail:
Nonisothermal kinetic experiments of polymeric wastes, such as polyethylene (PE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET), were studied in nitrogen atmosphere, and kinetic parameters were analyzed by Flynn-Wall method. The mixture containing polymeric wastes, which were combined to the ratio of 2: 2: 2: 1 for PE, PP, PET and PS on the basis of weight fraction, was also studied and analyzed in the same way. Theoretical activation energies (Eth) of mixtures were calculated and compared with experimental activation energy (Ea) obtained by Flynn-Wall method. The nonisothermal kinetic results of polymeric wastes showed that most of polymeric wastes had single step reactions and similar activation energies for observed conversion ranges respectively. In the result of kinetic parameter analysis of mixtures, Ea, showed lower values than values of Eth for all observed conversion ranges. This means that lower activation energies are the result of interaction among polymeric wastes during thermal decomposition of mixtures.
  1. Kaminsky W, Kim JS, J. Anal. Appl. Pyrolysis, 51, 127 (1999)
  2. Ranzi E, Dente M, Faravelli T, Bozzano G, Fabini S, Nava R, Cozani V, Tognotti L, J. Anal. Appl. Pyrolysis, 40, 305 (1997)
  3. Madras G, Smith JM, Benjamin JM, Polym. Degrad. Stabil., 58, 131 (1997)
  4. Yang M, Shibasaki Y, J. Polym. Sci. A: Polym. Chem., 36(13), 2315 (1998)
  5. Bockhorn H, Hornung A, Hornung U, J. Anal. Appl. Pyrolysis, 50, 77 (1999)
  6. Faravelli T, Bozzano G, Scassa C, Perego M, Fabini S, Ranzi E, Dente E, J. Anal. Appl. Pyrolysis, 52, 87 (1999)
  7. Sakata Y, Udden MA, Muto A, J. Anal. Appl. Pyrolysis, 51, 135 (1999)
  8. Jun HC, Oh SC, Lee HP, Kim HT, Yoo KO, J. Ind. Eng. Chem., 5(2), 143 (1999)
  9. Mccaffrey WC, Brues MJ, Cooper DG, Kamal MR, J. Appl. Polym. Sci., 60(12), 2133 (1996)
  10. Bockhorn H, Hentschel J, Hornung A, Hornung U, Chem. Eng. Sci., 54(15-16), 3043 (1999)
  11. Kiran N, Ekinci E, Snape CE, Res. Conservation Recycling, 29, 273 (2000) 
  12. Williams EA, Williams PT, J. Anal. Appl. Pyrolysis, 40, 347 (1997)
  13. Yoon WL, Park JS, Jung H, Lee HT, Lee DK, Fuel, 78(7), 809 (1999)
  14. Lee JY, Lee HK, Shim MJ, Kim SW, J. Ind. Eng. Chem., 6(4), 250 (2000)
  15. Nam DJ, Seferis JC, J. Polym. Sci. B: Polym. Phys., 29, 601 (1991)
  16. Doyle CD, J. Appl. Polym. Sci., 6, 639 (1962)
  17. Andricic B, Kovacic T, Polym. Degrad. Stabil., 65, 59 (1999)
  18. Kim H, Song B, Park C, Park Y, Korea Recources Recovery and Reutilization Corporation, Technical Report (1996)
  19. Sakata Y, Uddin MA, Koizumi K, Murata K, Polym. Degrad. Stabil., 53, 111 (1996)
  20. Chiu SJ, Cheng WH, Polym. Degrad. Stabil., 63, 407 (1999)
  21. Pinto F, Cdsta P, Gulyurtlu I, Cabrita I, J. Anal. Appl. Pyrolysis, 51, 39 (1999)
  22. Masuda T, Miwa Y, Hashimoto K, Ikeda Y, Polym. Degrad. Stabil., 61, 217 (1998)
  23. Murakata T, Saito Y, Yosikawa T, Suzuki T, Polymer, 34, 1436 (1993)
  24. Albano C, Freitas CD, Polym. Degrad. Stabil., 61, 289 (1998)