화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.41, No.4, 485-490, August, 2003
불소화 처리가 폴리이미드 필름의 표면 및 유전특성에 미치는 영향
Influence of Fluorination on Surface and Dielectric Characteristics of Polyimide Thin Film
E-mail:
초록
본 연구에서는 폴리이미드 필름 표면에 불소화 처리하여 필름의 표면 및 유전특성을 X-ray photoelectron spectroscopy (XPS)와 유전율 측정을 통해 관찰하였고, 열적ㆍ기계적 특성은 thermogravimetric analysis (TGA)와 인장강도를 측정하여 고찰하였다. 본 실험결과, 불소화 처리한 폴리이미드 필름은 처리가스량에 따라 불소함량이 증가하였으며, 결과적으로 미처리 필름과 비교하여 유전율이 감소하였다. 이러한 결과는 치환된 불소가 폴리이미드의 전자편극 (electron polarization)을 감소시키고, 큰 불소의 부피로 인해 자유부피를 증가시킴으로써 폴리이미드 필름의 유전율을 감소시킨 주요한 인자로 작용한 것으로 판단된다. 또한 본 실험에서 불소화 처리는 필름의 열적ㆍ기계적 특성에 큰 영향을 미치지 않은 것을 관찰할 수 있었다.
In this work, the effects of fluorine treatment of polyimide thin film on surface and dielectric characteristics were studied using X-ray photoelectron spectroscopy (XPS) and dielectric constant, respectively. And, their thermal and mechanical properties of the polyimide film were characterized by thermogravimetric analysis (TGA) and tensile strength, respectively. The fluorine content of the polyimide film was increased with increasing the amount of the treatment gas, resulting in decreasing the dielectric constant of the film. It was explained that the replacement of fluorine led to the decrease of the local electron polarization of polyimide, or to the increase of the free volume which can be attributed to the relatively large volume of fluorine. Nevertheless, the fluorination didn’t significantly affect thermal or mechanical properties of the polyimide film under a mild condition in this system.
  1. Laius LA, Polyimide: Thermally Stable Polymer, Consultants Bureau, New York (1987)
  2. Qu WL, Ko TM, J. Appl. Polym. Sci., 82(7), 1642 (2001) 
  3. Singer P, Changing the Promise of Faster Chips, Semiconductor International, November, 52 (1994)
  4. Ghosh MK, Mittal KL, Polyimides; Fundamentals and Applications, Marcel Dekker, New York (1936)
  5. Hippel., Dielectric Materials and Applications, Artech House (1954)
  6. Banerjee S, Madhra MK, Salunke AK, Maier G, J. Polym. Sci. A: Polym. Chem., 40(8), 1016 (2002) 
  7. Lee YK, Murarka SP, Mater. Res. Bull., 34(6), 869 (1999) 
  8. Jiang LY, Leu CM, Wei KH, Adv. Mater., 14(6), 426 (2002) 
  9. Yang CP, Hsiao SH, Chen KH, Polymer, 43(19), 5095 (2002) 
  10. Chen KY, Kuo JF, Macromol. Chem. Phys., 201(18), 2676 (2000) 
  11. Chaiyasu C, Tsuda T, Kitagawa S, Wada H, Monde T, Nakabeya Y, J. Microcolumn. Sep., 11(8), 590 (1999) 
  12. Sharts CM, J. Chem. Educ., 45(3), 185 (1968)
  13. Park SJ, Kim JS, J. Colloid Interface Sci., 232(2), 311 (2000) 
  14. Park SJ, Jin JS, J. Colloid Interface Sci., 236(1), 155 (2001) 
  15. Bessonov MI, Zubkov VA, Polyamic Acids and Polyimides; Synthesis, Transformations and Structure, CRC Press (1993)
  16. Madhra MK, Salunke AK, Banerjee S, Prabha S, Macromol. Chem. Phys., 203(9), 1238 (2002) 
  17. VanKrevelen DW, Properties of Polymers, Elsevier Science Publishing Company Inc., New York (1990)
  18. Park SJ, Kim HC, J. Polym. Sci. B: Polym. Phys., 39(1), 121 (2001) 
  19. Chern YT, Shine HC, Macromol. Chem. Phys., 199(6), 963 (1998) 
  20. Grahan Solomons TW, Fryhle CB, Organic Chemistry, John Wiley, 7th New York (2001)