화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.5, 580-585, August, 2003
첨착활성탄소섬유에서 질소산화물의 흡착-탈착 양상과 표면변화 특성에 대한 메커니즘
NOx Adsorption-Desorption Behavior and Mechanism for Characteristic of Surface on Impregnated Activated Carbon Fibers
E-mail:
초록
KOH를 활성탄소섬유(activated carbon fiber: ACF)에 저온습식함침법으로 첨착시켜 NOx의 흡·탈착 거동과 표면화학에 대하여 알아보았다. 100 ℃에서 흡착한 후 800 ℃까지 승온시켜 탈착하였다. 그 결과 첨착된 양이 많아질수록 NOx 제거 능력은 비례하여 증가하였으며, 파과도 지연되는 것을 볼 수 있었다. 그러나 너무 많은 양의 첨착은 오히려 흡착능이 떨어지는 현상을 보였다. 탈착은 200 ℃ 이내에서 대부분 이루어졌으며, NO2의 형태보다 NO의 형태로 높은 농도가 탈착되었다. TGA/DSC, EPMA, ToF-SIMS를 사용하여 흡착과 탈착 전·후의 첨착활성탄소섬유에서의 열적거동과 표면화학특성을 고찰하였다. 흡착은 KNOx의 형태로 이루어졌으며, 탈착 후에도 표면에 여전히 K가 존재하고 있는 것을 확인할 수 있었다.
Activated carbon fiber impregnated with potassium hydroxide, via low temperature wet impregnation method, was used for NOx adsorption. In this study, the adsorption and desorption behaviors and the accompanied surface chemistry were examined. NOx adsorption was conducted at 100 ℃ and the desorption behavior was examined as the temperature was raised to 800 ℃ following the adsorption. As the loading of impregnant increased, the removal efficiency increased proportionally and delaying decomposition. The adsorptivity, however, decreased when KOH was impregnated in excess. The desorption occurred mostly at 200 ℃ following the adsorption, and high concentration of NO rather than NO2 was desorbed. By using TGA/DSC, EPMA and ToF-SIMS, the thermal behavior and surface chemical nature of both the impregnated and virgin activated carbon fibers were examined through the adsorption and desorption of NOx. The adsorbed NOx was in KNOx form, confirming that K remained on the surface even after the desorption.
  1. Illan-Gomez MJ, Brandan S, Linares-Solano A, de Lecea CSM, Appl. Catal. B: Environ., 25(1), 11 (2000) 
  2. Izquierdo MT, Rubio B, Environ. Sci. Technol., 32, 4017 (1998) 
  3. Mochida I, Kawabuchi Y, Kawano S, Matsumura Y, Yoshikawa M, Fuel, 76(6), 543 (1997) 
  4. Mallet C, Aho M, Hamalainen J, Rouan JP, Richard JR, Energy Fuels, 11(4), 792 (1997) 
  5. Aarna I, Suuberg EM, Energy Fuels, 13(6), 1145 (1999) 
  6. Carrott PJM, Nabais JMV, RibeiroCarrott MML, Pajares JA, Carbon, 39, 1543 (2001) 
  7. Miura K, Nakagawa H, Okamoto H, Carbon, 38, 119 (2000) 
  8. El-Merraoui M, Tamai H, Yasuda H, Kanata T, Mondori J, Nadai K, Kaneko K, Carbon, 36, 1769 (1998) 
  9. GarciaGarcia A, IllanGomez M, LinaresSolano A, deLecea CSM, Fuel, 76(6), 499 (1997) 
  10. Nelli CH, Rochelle GT, Ind. Eng. Chem. Res., 35(4), 999 (1996) 
  11. Zhu ZH, Lu GQ, J. Catal., 187(2), 262 (1999) 
  12. Mochida I, Korai Y, Shirahama M, Kawano S, Hada T, Seo Y, Yoshikawa M, Yasutake A, Carbon, 38, 227 (2000) 
  13. Guo J, Lua AC, Microporous Mesoporous Mater., 32, 111 (1999) 
  14. Hsu LY, Teng I, Fuel Process. Technol., 64(1), 155 (2000) 
  15. Daz-Tern J, Nevskaia DM, Lpez-Peinado AJ, Jerez A, Colloids Surf. A: Physicochem. Eng. Asp., 187-188, 167 (2001) 
  16. Lee YW, Choi DK, Park JW, Ind. Eng. Chem. Res., 40(15), 3337 (2001) 
  17. Lee YW, Choi DK, Park JW, Sep. Sci. Technol., 37(4), 937 (2002)