- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.27, No.5, 502-507, September, 2003
저밀도 폴리에틸렌/메탈로센 선형 저밀도 폴리에틸렌 블렌드의 열적 거동 및 물성
Thermal Behavior and Physical Properties of Low Density Polyethylene Blends
E-mail:
초록
메탈로센 선형 저밀도 폴리에틸렌 (m-LLDPE)과 저밀도 폴리에틸렌 (LDPE)을 용융 블렌딩 방법으로 블렌드를 제조하여 열적 거동 및 물성을 관찰하였다. LDPE/m-LLDPE1 블렌드는 LDPE 조성이 50% 이상이면 두 개의 용융 피크가 관찰된 반면 다른 블렌드들은 단일한 용융 피크를 나타내었다. m-LLDPE에서 공단량체 함량이 감소할수록 용융 온도와 상대 결정화도가 증가하였다. 공단량체 함량이 2 wt% m-LLDPE1이 초기 탄성률이 가장 높게 관찰되었고, 공단량체 함량이 증가함에 따라 감소하였다. 블렌드에서 조성에 따른 초기 탄성률의 변화는 상대 결정화도의 거동과 유사하게 나타났다. 블렌드의 파괴 신율은 LDPE/m-LLDPE1과 LDPE/m-LLDPE2 블렌드에서 평균값보다 낮은 파괴 신율을 나타내었었다. m-LLDPE2의 용융 지수가 가장 높게 관찰되었고 공단량체 함량이 증가함에 따라 감소하는 경향을 나타내었다.
The thermal and physical properties of low density polyethylene melt-blended with Metallocene linear low density polyethylenes were investigated. Since the Metallocene polyethylenes have similar MW and MWD except m-LLDPE4, it can be said that the thermal behavior and mechanical properties of the blends depend upon the 1-octene comonomer content. The melting behavior of LDPE/m-LLDPE1 blends shows two melting peaks with LDPE contents higher than 50%, while the other blends show only one melting peak. It was observed that the blends show higher crystallization temperature and higher crystallinity with lower comonomer content. Initial modulus of a blend exhibited the behavior proportional to the crystallinity and the elongation at break of the blends was increased with increasing the m-LLDPE composition. Melt indices of the blends decreased with increasing the comonomer content of Metallocene LLDPE. Melt Index values of the blends show negative deviation.
- Cho SM, Lee Y, Hwang SH, Lee SW, Kim SK, J. Korean Ind. Eng. Chem., 7(3), 504 (1996)
- Utracki LA, Polymer Alloys and Blends, Hanser, Munich (1989)
- Yeo JK, Sperling LH, Thomas DA, Polymer, 24, 307 (1983)
- Lipatov YS, Shilov VV, Gomza YP, Kovernik GP, Grigoreva OP, Sergeyeva LM, Makromol. Chem., 185, 347 (1984)
- Olabisi OS, Shaw MT, Robeson LM, Polymer-Polymer Miscibility, Academic Press, New York (1979)
- Solc K, Polymer Compatibility and Incompatibility, MMI Press, New York (1982)
- Olabis O, Robeson LM, Show MT, Polymer-Polymer Miscibility, Academic Press, New York (1979)
- Sperling LH, Manson JA, Polymer Blends and Composites, Plenum Press, New York (1976)
- Speed CS, Plast. Eng., July, 39 (1982)
- Haghighat S, Bireley AW, Plast. Rub. Proc. Appl., 13, 197 (1990)
- Babel AK, Campbell GA, TAPPI J., 78, 199 (1995)
- Wong ACY, Plast. Rub. Comp. Proc. Appl., 20, 159 (1993)
- McNally GM, Bermingham C, Murphy WR, Chem. Eng. Res. Des., 71, 223 (1993)
- Furuyama A, Abana Y, Ushida Y, Masuda T, Nakajima A, Pure Appl. Chem., 57, 824 (1985)
- Bubeck RA, Baker HM, Polymer, 23, 1680 (1982)
- Leaversuch RD, Mod Plast. Int., 70, 18 (1995)
- Schut JH, Plast. World, 53, 12 (1995)
- DeGaravilla JR, TAPPI J., 78, 191 (1995)
- Montagna AA, Floyd JC, Hydrocarb. Process., 73(3), 57 (1994)
- Woo L, Ling MTK, Westphal SP, Thermochim. Acta, 272, 171 (1996)
- Vasale, Handbook of Polyolefins, Marcel Dekker, New York (1993)
- Shao Y, Liu S, Yang D, Macromol. Chem. Phys., 198, 1427 (1997)
- Nishi T, Wang TT, Macromolecules, 8, 909 (1975)
- Lee SY, Doctor Thesis, Seoul National University, 110 (1999)
- Popli R,, J. Polym. Sci. B: Polym. Phys., 25, 441 (1987)
- Rudin A, Macromol. Chem., 19, 267 (1980)
- Cella RJ, Runt JP, Coleman MM, Polymer, 24, 37 (1983)
- Shishesaz MR, Donatelli AA, Polym. Eng. Sci., 21, 869 (1981)