화학공학소재연구정보센터
Chemical Engineering Science, Vol.58, No.14, 3077-3089, 2003
A hybrid CFD - reaction engineering framework for multiphase reactor modelling: basic concept and application to bubble column reactors
The coupling of turbulent mixing and chemical phenomena lies at the heart of multiphase reaction engineering, but direct CFD approaches are usually confronted with excessive computational demands. In this hybrid approach, the quantification of mixing is accomplished through averaging the flow and concentration profiles resulting from a CFD flow field calculation and a computational ("virtual") tracer experiment. Based on these results, we construct a mapping of the CFD grid into a generalised compartmental model where the chemistry calculations can be efficiently carried out. In contrast to the empirical models used in the residence time distribution (RTD) approach, the compartmental model in this methodology, owning to its CFD origins, retains the essential features of the equipment geometry and flow field. A procedure for extracting the mixing information from k-epsilon based CFD codes is outlined, but the main concept of the approach is not restricted to any particular type of turbulence modelling, and will therefore benefit from future developments. A phenomenological model of mass transfer and chemical reaction, based on the penetration theory, is employed to simulate the interfacial phenomena in gas-liquid reactors, and a study of CO2 absorption into alkali solution is presented to demonstrate the method. (C) 2003 Elsevier Ltd. All rights reserved.