화학공학소재연구정보센터
Journal of Chemical Physics, Vol.119, No.2, 1085-1092, 2003
Adsorption of methylchloride on Si(100) from first principles
The chemisorption of methylchloride (CH3Cl) on Si(100) is studied from first principles. We find that, among a number of possible adsorption configurations, the lowest-energy structure is one in which the methylchloride molecule is dissociated into CH3 and Cl fragments which are bound to the two Si atoms of the same surface dimer. Our calculations show that dissociative chemisorption of methylchloride on Si(100) may proceed along different reaction paths characterized by different energy barriers that the system must overcome: some dissociation processes are mediated by a molecular precursor state and, at least in one case, we find that the dissociation process is nonactivated, in agreement with recent experimental findings. We have also generated, for many possible adsorption structures, theoretical scanning tunneling microscopy images which could facilitate the interpretation of experimental measurements. (C) 2003 American Institute of Physics.