화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.36, No.4, 536-542, August, 1998
열팽창 치공구를 이용한 복합재료의 성형 및 압축압력 연구
Consolidation Pressure Control in Thermally-Expandable Rubber-Tool Process for Polymeric Composite Materials
초록
본 연구에서는 복합재료의 가공에 있어서 압축(consolidation)또는 함침(infusion)에 필요한 압력을 열팽창치공구를 이용하여 생성시키는 열팽창치공구 공정을 연구하였다. 항공용 복합재료의 가공에 적합한 실리콘 계통의 고무치공구를 선정하였고 이 소재에 대하여 온도가 상승함에 따라 열팽창으로 생성되는 압력을 예측하기 위하여 열팽창계수와 effective bulk modulus를 측정하였다. 또한 1-D radial constrained expansion계를 설정하여 온도에 따른 압력형성을 실험적으로 측정하였고 이론과 비교하였다. 온도에 따른 압력생성을 예측하기 위한 모델링을 통하여 온도에 따른 압력증가를 열팽창 계수와 bulk modulus의 함수로 나타낼 수 있었으며, 압력은 자유부피와 몰드 configuration에 따라 영향을 받는 것으로 확인되었으며 이에 대한 정량적인 예측도 가능하였다.
As a novel composite manufacturing process, the thermally-expandable rubber-tool process was investigated in order to obtain the enhanced laminate consolidation and resin infusion in both thermoplastic- and thermoset-based composite systems. A silicon-based rubber tool was chosen for the primary applications in aircraft environment. The thermal expansion coefficient and bulk modulus of the rubber tool were measured by a 1-D radial expansion system and subsequently used to predict the pressure generated by the expanding rubber tool as a function of temperature. The generated pressure was expressed by the thermo-physical properties and as a function of processing temperature. Finally, the mold configurations including the relative gap and rubber tool volumes influenced the characteristic features of the pressure build-up in rubber-tool based thermal processing.
  1. Agarwel BD, Broutman LJ, "Analysis and Performance of Fiber Composites," 2nd Ed., A Wiley-Interscience, Canada (1990)
  2. Jang BZ, "Advanced Polymer Composites," ASM International, U.S.A. (1994)
  3. Nam JD, Ahn K, Polym. Sci. Technol., 6(5), 459 (1995)
  4. Suh DW, Ku MK, Nam JD, Choi H, Chung KM, Ahn KJ, Polym.(Korea), 21(6), 1029 (1997)
  5. Jung W, Choi H, Ahn K, Conf. Korea Comp. Mat., May 8-10, Taejon, 222 (1997)
  6. Jung W, Choi H, Um Y, Ahn K, Nam JD, Conf. Korea Comp. Mat., Nov. 25, Seoul, 95 (1994)
  7. Um Y, Jung W, Ahn K, Seferis JC, Conf. Korea Comp. Mat., Nov. 25, Seoul, 50 (1994)
  8. Lee JW, You JK, Han YM, Kuk KC, Lee SJ, Conf. Korea Comp. Mat., May 8-10, Taejon, 216 (1994)
  9. Erik S, Robert M, J. Adv. Mat., 26, 2 (1994)
  10. Peterson AL, Cull RA, McMahon DF, 36th International SAMPE Symposium, April, 959 (1991)
  11. Cull RA, Jacobson L, McMahon DF, 36th International SAMPE Symposium, April, 944 (1991)
  12. McLarty DL, 34th International SAMPE Symposium, May, 1294 (1989)
  13. Sarrazin H, Kim B, Ahn SH, Springer GS, J. Comp. Mat., 29, 1278 (1995)
  14. Kim CG, Kim TW, Kim IG, Jun EJ, The Processing of the 7th Int. Conference on Composite Materials, 1, 839 (1989)
  15. Namgung C, Lee JH, Rhee JM, Conf. Korea Comp. Mat., May 25, Pusan (1997)
  16. Van Klevelen DW, "Properties of Polymers," Elsevier, U.S.A. (1972)
  17. Gent AN, "Engineering with Rubber," Oxford University Press, New York (1992)
  18. Brandup J, Immergut EH, "Polymer Handbook," 3rd ed., Wiley, New York (1989)
  19. Krishnamachari SI, "Applied Stress Analysis of Plastics," Van Nostrand Reinhold, New York (1993)
  20. Gent AN, Henry RL, Roxbury ML, J. Appl. Mech., 41, 855 (1974)
  21. Dally JW, Riley WF, "Experimental Stress Analysis," 3rd ed., McGraw-Hill, U.S.A. (1991)
  22. Mark JE, "Physical Properties of Polymer Handbook," America Institute of Physics, New York (1996)