Journal of the American Chemical Society, Vol.125, No.24, 7451-7460, 2003
Solid state separated-local-field NMR spectroscopy on half-integer quadrupolar nuclei: Principles and applications to borane analysis
New multidimensional NMR methods correlating the quadrupolar and heteronuclear dipolar interactions affecting a half-integer quadrupolar spin in the solid state are introduced and exemplified. The methods extend separated-local-field magic-angle spinning (SLF MAS) NMR techniques that have been used successfully in spin-(1)/(2) spectroscopy to the study of S greater than or equal to (3)/(2) nuclei. In our implementation, these techniques avoid homonuclear proton decoupling requirements by relying on moderately fast MAS rates (6-15 kHz) and use rotor-synchronized constant-time pulse sequences to achieve nearly arbitrary amplifications of the apparent dipolar coupling strengths. The result is a suite of simple 2D NMR experiments, whose line shapes carry valuable information about the structure and dynamics of solids containing quadrupolar and proton nuclei. The potential of these sequences was exploited to gather new insight into the structure and dynamics of a variety of boron-containing samples. These experimental SLF schemes were also extended to 3D NMR experiments that incorporate multiple-quantum MAS, thus enabling the resolution needed to study multiple chemical sites in a solid and providing a useful tool for the assignment of inequivalent sites.