Journal of the American Chemical Society, Vol.125, No.27, 8255-8263, 2003
pi-face-selective Diels-Alder reactions of 3,4-di-tert-butylthiophene 1-oxide and 1-imide and formation of 1,2-thiazetidines
3,4-Di-tert-butylthiophene 1-oxide (1a) reacted with a series of electron-deficient alkenic dienophiles at its syn-pi-face relating to the S=O bond to give [4+2] adducts in excellent yields. The 1-oxide la also reacted even with angle-strained dienophiles acenaphthylene and norbornene at its syn-pi-face to afford [4+2] adducts; in the latter case, norbornene reacted exclusively at its exo-pi-face. The oxide la reacted with dimethyl acetylenedicarboxylate to produce dimethyl 4,5-di-tert-butylphthalate in high yield with spontaneous extrusion of SO from the initial adduct even at room temperature. Similarly, 3,4-di-tert-butylthiophene 1-(p-toluenesulfonyl)imide (3a) reacted with alkenic dienophiles at its syn-pi-face relating to the S=N bond to give [4+2] adducts in good yields. The reaction of 3a with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) afforded a 1,2-thiazetidine 12a, the first example of S-unoxidized 1,2-thiazetidine, in good yield, through rearrangement of the initial [4+2] adduct. The molecular structure of 12a is discussed on the basis of the X-ray crystallographic analysis. Comparison of the foregoing reactions leads to the conclusion that the 1-oxide 1 a is more reactive as a diene than the 1-imide 3a, which is more reactive than 3,4-di-tert-butylthiophene 1, 1-dioxide. The origin of the syn-pi-face selectivities of 1 a and 3a in Diels-Alder reactions is discussed in terms of the orbital mixing rule and steric effect and also based on B3LYP/6-31G(d) calculations.