화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.36, No.5, 720-725, October, 1998
중공사막 접촉기를 통한 탄산칼륨 수용액으로의 이산화탄소 흡수거동 연구
Absorption Behavior of Carbon Dioxide in Potassium Carbonate Aqueous Solution Using Hollow Fiber Membrane Contactor
초록
병류흐름 구조를 갖는 소수성의 다공성 중공사막 접촉기에서 이산화탄소 흡수에 대한 다양한 시스템 변수들의 영향을 고찰하였다. 흡수제로는 이산화탄소와 반응성이 있는 탄산칼륨 수용액을 사용하였으며, 반응에 의한 영향을 비교 고찰하기 위하여 순수물을 이용한 실험을 행하였다. 기체는 이산화탄소와 질소의 혼합기체를 사용하였으며, 중공사막의 기공 상태는 혼합기체와 흡수제의 적절한 압력조절을 통하여 비젖음성 조건으로 유지하였다. 탄산칼륨 수용액을 흡수제로 사용했을 경우, 순수물에 비하여 실험변수들에 따라서 약 4-6배 정도 더 큰 이산화탄소의 투과속도를 얻을 수 있었으며, 흡수제 내의 탄산칼륨의 농도가 증가할수록, 그리고 혼합기체의 압력과 유속이 증가할수록 흡수속도가 증가함을 알 수 있었다.
The effects of various system parameters on the absorption of carbon dioxide into the absorbent liquid were investigated in a hydrophobic microporous hollow fiber membrane contactor with a configuration of countercurrent. An aqueous potassium carbonate solution was used as an absorbent and its permeation results were compared to those obtained with pure water to figure out the effect of chemical reaction. The mixture of carbon dioxide and nitrogen was used as an inlet gas and the pore condition of the hollow fiber membrane was hold to be nonwetted through an appropriate control of pressures of a mixture gas and an absorbent. In case of an aqueous potassium carbonate solution used as an absorbent, the permeation rate of carbon dioxide was about 4-6 times higher than that in pure water. The permeation rate was increased withthe increments of the concentration of potassium carbonate in an absorbent, the pressure and the flow rate of a mixture gas.
  1. Ghosh AC, Borthakur S, Dutta NN, J. Membr. Sci., 96(3), 183 (1994) 
  2. Lee KH, Kim YM, Park YI, Nam SE, "Separation and Recovery of CO2 from Flue Gases," Report No. NG 1008, Ministry of Environment, Korea
  3. Kreulen H, Smolders CA, Versteeg GF, van Swaaij WPM, J. Membr. Sci., 78, 197 (1993) 
  4. Yang MC, Cussler EL, AIChE J., 32, 1910 (1986) 
  5. Qi Z, Cussler EL, J. Membr. Sci., 23, 333 (1985) 
  6. Ahn JS, Lee SM, HWAHAK KONGHAK, 34(6), 675 (1996)
  7. Kim YI, Jin DW, Kim JH, Choi DU, Park DW, HWAHAK KONGHAK, 34(6), 806 (1996)
  8. Rangwala HA, J. Membr. Sci., 112(2), 229 (1996) 
  9. Yang MC, Cussler EL, J. Membr. Sci., 42, 273 (1989) 
  10. Matsumoto H, Kamata T, Kitamura H, Ishibashi M, Ohta H, Nishikawa N, 2nd CO2 Workshop, KRICT, Taejon (1994)
  11. Kreulen H, Smolders CA, Versteeg GF, van Swaaij WPM, J. Membr. Sci., 78, 217 (1993) 
  12. Otto NC, Quinn JA, Chem. Eng. Sci., 26, 949 (1971) 
  13. Astarita G, Savage DW, Bisio A, "Gas Treating with Chemical Solvents," John Wiley & Sons, New York, N.Y. (1983)
  14. Laddha SS, Danckwerts PV, Chem. Eng. Sci., 36, 479 (1981) 
  15. Nii S, Takeuchi H, Gas Sep. Purif., 8(2), 107 (1994) 
  16. Meldon JH, Stroeve P, Gregoire CE, Chem. Eng. Commun., 16, 263 (1982)
  17. Kim BS, Harriott P, J. Colloid Interface Sci., 115, 1 (1987) 
  18. Yeom BY, Lee Y, Res. Inst. Ind. Technol., 11, 1 (1996)