화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.41, No.5, 649-654, October, 2003
은 함유 활성탄소섬유의 기공특성 및 이에 의한 NO 제거에 관한 연구
Studies on Textural Properties of Activated Carbon Fibers Containing Silver Metal and their NO Removal Test
E-mail:
초록
본 연구에서는 활성탄소섬유(activated carbon fiber, ACF)의 표면에 전해도금 방법으로 은(Ag)을 도입하여 Ag가 NO 제거에 미치는 영향을 고찰하였다. Ag가 도입된 ACF의 표면특성은 X-ray diffraction(XRD)와 scanning electron microscope(SEM)을 이용하여 관찰하였으며, N2/77K 등온 흡착 특성은 BET식과 Boer의 t-plot을 이용하여 확인하였고, NO 제거효율은 가스 크로마토그래프를 이용하여 분석하였다. 실험결과 도금 시간이 증가함에 따라 ACF표면의 Ag의 양은 점차 증가하였으나, ACF의 흡착 특성인 비표면적, 기공부피 등의 기공구조는 조금씩 감소하는 경향을 보였다. NO 제거효율 또한 초기에는 도입된 Ag의 양에 따라 증가하다가, 일정 도금량 이후에는 반대로 감소하는 경향이 나타났다. 이러한 결과는 ACF표면에 도입된 Ag이 NO제거에 도움을 주지만 그 양이 증가됨에 따라 ACF의 기공을 막아 ACF의 NO흡착특성을 감소시키기 때문으로 판단된다. 결론적으로 Ag가 도입된 ACF의 NO 제거반응은 Ag의 양과 ACF의 흡착특성에 의해 결정된다고 판단된다.
In this study, the activated carbon fiber (ACF), on which Ag had been introduced by an electroplating technique, was used to remove NO. Surface properties of the ACF were determined by X-ray diffraction (XRD) and scanning electron microscope (SEM). N2 adsorption isotherms at 77 K were investigated by BET and t-plot methods to characterize specific surface areas and pore volumes, and NO removal efficiency was confirmed by gas chromatographic technique. As experimental results, Ag content on the ACF increased with plating time. However, adsorption properties such as BET specific surface area and total pore volume were somewhat decreased in the presence of silver. NO removal efficiency of all Ag-ACF was higher than that with untreated ACF and increased with Ag content. However, decrease in the extent of NO removal was shown in the excessively plated ACF, which might be associated with the blocking of micropores in the carbon; therefore, an optimal Ag content exists in the presence of initially-well-developed micropores to lead increase in efficient NO removal ability of the ACF.
  1. Noll KE, Gounaris V, Hou WS, Adsorption Technology for Air Water Pollution Control, Lewis, Michigan (1992)
  2. Park BJ, Park SJ, Ryu SK, J. Colloid Interface Sci., 217(1), 142 (1999) 
  3. Bansal RC, Donnet JB, Stoeckli F, Active Carbon, Marcel Dekker, New York (1998)
  4. Calvert S, Englund HM, Handbook of Air Pollution Technology, John Wiley & Sons, New York (1984)
  5. Zhu ZP, Liu ZY, Liu SJ, Niu HX, Appl. Catal. B: Environ., 23(4), 229 (1999) 
  6. Hu YH, Ruckenstein E, J. Catal., 172(1), 110 (1997) 
  7. Ryu SK, Kim SY, Gallego N, Edie DD, Carbon, 37(10), 1619 (1999) 
  8. de Miguel SR, Villella JI, Jablonski EL, Scelza OA, de Lecea CSM, Linares-Solano A, Appl. Catal. A: Gen., 232(1-2), 237 (2002) 
  9. Hong I, Jiang H, Park YD, Kim JY, Ha BH, Chem. Phys. Lett., 366(5-6), 572 (2002) 
  10. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938) 
  11. Lippens BC, deBoer JH, J. Catal., 4, 319 (1965) 
  12. Abraham S, Pai BC, Satyanarayana KG, Vaidyan VK, J. Mater. Sci., 25(12), 2839 (1990) 
  13. Park SJ, Jang YS, J. Colloid Interface Sci., 237(1), 91 (2001) 
  14. Denton P, Giroir-Fendler A, Schuurman Y, Praliaud H, Mirodatos C, Primet M, Appl. Catal. A: Gen., 220(1-2), 141 (2001) 
  15. Lowell S, Shields JE, Power Surface Area and Porosity, Chapman & Hall, London (1993)
  16. Park SJ, Hsu JP, Interfacial Forces and Fields: Theory and Applications, Chap. 9, Marcel Dekker, New York (1999)
  17. Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press, New York (1984)
  18. Park SJ, Kim KD, J. Colloid Interface Sci., 218(1), 331 (1999) 
  19. Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16(6), 470 (1983)
  20. Ryu Z, Zheng J, Wang M, Zhang B, Carbon, 39(12), 1929 (2001) 
  21. Warhurst AM, Fowler GD, McConnachie GL, Pollard SJT, Carbon, 35(8), 1039 (1997) 
  22. Valladares DL, Reinoso FR, Zgrablich G, Carbon, 36(10), 1491 (1998) 
  23. Chen Z, Mu L, Ignowski J, Kelly B, Linjewile TM, Agarwal PK, Fuel, 80, 1259 (2001) 
  24. Park SJ, Jang YS, Kawasaki J, HWAHAK KONGHAK, 40(6), 664 (2002)