화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.8, 1086-1091, December, 2003
오존처리된 카본블랙을 충전한 HDPE 기지 복합재료의 PTC 특성
PTC Characteristics of Ozonized CB-filled HDPE Matrix Composites
E-mail:
초록
본 연구에서는 PTC 세기 증가를 위하여 시간의 변수로 카본블랙을 오존처리 한 후 이를 사용하여 카본블랙/HDPE 전도성 복합재료를 제조하였다. 오존처리된 카본블랙의 표면특성 변화는 FT-IR, XPS 그리고 BET 측정을 통하여 확인하였다. FT-IR과 XPS실험 결과, 카본블랙의 표면에 O-H, C=O, 그리고 C-O와 같은 산소함유 관능기가 오존처리 후 증가하였으며, 오존처리 시간이 증가할수록 피크의 세기가 증가함을 관찰할 수 있었다. 반면, 오존처리된 카본블랙의 비표면적은 오존처리 시간이 증가할수록 감소하는 경향을 나타내었다. 결과로서, 카본블랙의 오존처리를 통해 카본블랙/HDPE복합재료의 PTC 세기를 증가시켰는데, 이는 오존처리에 의해 카본블랙 표면의 산소함유 관능기 증가에 따른, PTC소자의 최대 비저항값이 증가하기 때문이라 판단된다.
In this paper, the ozonized carbon blacks (CB) were used to increase positive temperature coefficient (PTC) intensity of CB-filled high density polyethylene (HDPE) conductive composites as a function of ozoniztion time. And the changes in surface properties of ozonized CB were investigated using FT-IR, XPS, and BET measurements. From the FT-IR and XPS results, it was observed that oxygen-containing functional groups, such as O-H, C=O, and C-O, were introduced in the CB surfaces after ozonization. Also, the peak intensity was increased with increasing the ozonization time. Meanwhile, the specific surface area of ozonized CB was decreased with increasing the ozonization time. Consequently, the increase of ozonization time on CB made an increase of PTC intensity of CB/HDPE composites, which was probably due to the growing of maximum volume resistivity of composites, resulting from increasing the oxygen-containing functional groups of CB particles.
  1. Song YH, Pan Y, Zheng Q, Yi XS, J. Polym. Sci. B: Polym. Phys., 38(13), 1756 (2000) 
  2. Feng JY, Chan CM, Polymer, 41(19), 7279 (2000) 
  3. Park SJ, Kim HC, Kim HY, J. Colloid Interface Sci., 255(1), 145 (2002) 
  4. Hummel RE, Electronic Properties of Materials, Springger-Verlag, Berlin (1992)
  5. Narkis M, Ram A, Stein Z, J. Appl. Polym. Sci., 25, 1515 (1980) 
  6. Kohler F, U.S. Patent, 3,243,753, March 29 (1966)
  7. Meyer J, Polym. Eng. Sci., 14, 706 (1974) 
  8. Zhang MY, Jia WT, Chen XF, J. Appl. Polym. Sci., 62(5), 743 (1996) 
  9. Yang G, Teng R, Xiao P, Polym. Compo., 18, 477 (1997) 
  10. Mironi-Harpaz I, Narkis M, J. Polym. Sci. B: Polym. Phys., 39(12), 1415 (2001) 
  11. Chekanov Y, Ohnogi R, Asai S, Sumita M, Polym. J., 30, 381 (1998) 
  12. Park SJ, Interfacial Forces and Fields: Theory and Applications, ed. by J.P. Hsu, chap. 9, Marcel Dekker, New York (1999)
  13. Park SJ, Kim JS, J. Colloid Interface Sci., 244(2), 336 (2001) 
  14. Nie HY, Walzak MJ, Berno B, McIntyre NS, Appl. Surf. Sci., 144, 627 (1999) 
  15. Fu X, Lu W, Chung DDL, Carbon, 36, 1337 (1998) 
  16. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938) 
  17. Yi X, Wu G, Pan Y, Polym. Int., 44, 117 (1997) 
  18. Park SJ, Kim JS, Carbon, 39, 2011 (2001) 
  19. Kinoshita K, Carbon Electrochemical and Physicochemical Properties, John Wiley, New York (1987)
  20. Donnet JB, Bansal RC, Wang MJ, Carbon Black Science and Technology, Marcel Dekker, New York (1993)