Chinese Journal of Chemical Engineering, Vol.11, No.3, 358-361, 2003
Chaos transfer in fluidized beds accompanied with biomass pyrolysis
Experiments of biomass pyrolysis were carried out in a fluidized bed, and dynamic signals of pressure and temperature were recorded. Correlation dimension was employed to characterize the chaotic behavior of pressure and temperature signals. Both pressure and temperature signals exhibit chaotic behavior, and the chaotic behavior of temperature signals is always weaker than that of pressure signals. Chaos transfer theory was advanced to explain the above phenomena. The discussion on the algorithm of the correlation dimension shows that the distance definition based on rhombic neighborhood is a better choice than the traditional one based on spherical neighborhood. The former provides a satisfactory result in a much shorter time.