화학공학소재연구정보센터
Electrochimica Acta, Vol.48, No.19, 2739-2748, 2003
AC impedance studies of anodically treated polycrystalline and homoepitaxial boron-doped diamond electrodes
The electrochemical properties of several types of diamond electrodes, including polycrystalline and homoepitaxial films, that underwent anodic treatment were examined with the electrochemical impedance spectroscopic (EIS) technique, as well as with capacitance-potential measurements. From an analysis of the impedance behavior, it was found that an additional capacitance element, which is apparent in the relatively high-frequency range (100-1000 Hz), was generated on the polycrystalline and (1 0 0) homoepitaxial diamond electrodes after anodic treatment. This capacitive element can be characterized as being non-Faradaic, because it has negligible dependence on the applied potential. Acceptor densities and depth profiles were calculated from the Mott-Schottky plots, and the acceptor densities in the near-surface region of the anodically treated surfaces were found to be extremely low. These results indicate that passive layers were generated on the diamond surfaces by the anodic treatment. The capacitance-potential behavior was also consistent with a model consisting of a semiconductor with a passive surface film. The passive film is proposed to arise as a result of the removal of hydrogen acting as an acceptor in the subsurface region, leaving hydrogen that is paired essentially quantitatively with the boron dopant, effectively neutralizing it. (C) 2003 Elsevier Science Ltd. All rights reserved.