Inorganic Chemistry, Vol.42, No.17, 5173-5184, 2003
Electron donor-acceptor dyads and triads based on tris(bipyridine)ruthenium(II) and benzoquinone: Synthesis, characterization, and photoinduced electron transfer reactions
Two electron donor-acceptor triads based on a benzoquinone acceptor linked to a light absorbing [Ru(bpy)(3)](2+) complex have been synthesized. In triad 6 (denoted Ru-II-BQ-Co-III), a [Co(bpy)(3)](3+) complex, a potential secondary acceptor, was linked to the quinone. In the other triad, 8 (denoted PTZ-Ru-II-BQ), a phenothiazine donor was linked to the ruthenium moiety. The corresponding dyads Ru-II-BQ (4) and PTZ-Ru-II (9) were prepared for comparison. Upon light excitation in the visible band of the ruthenium moiety, electron transfer to the quinone occurred with a rate constant k(1) = 5 x 10(9) s(-1) (tau(1) = 200 ps) in all the quinone containing complexes. Recombination to the ground state followed, with a rate constant k(b) similar to 4.5 x 10(8) s(-1) (tau(b) similar to 2.2 ns), for both Ru-II-BQ and Ru-II-BQ-Co-III with no indication of a charge shift to generate the reduced Coll moiety. In the PTZ-Ru-II-BQ triad, however, the initial charge separation was followed by a rapid (k > 5 x 10(9) s(-1)) electron transfer from the phenothiazine moiety to give the fairly long-lived PTZ(.+)-Ru-II-BQ(.-) state (tau = 80 ns) in unusually high yield for a [Ru(bPY)(3)](2+)- based triad (> 90%), that lies at DeltaGdegrees = 1.32 eV relative to the ground state. Unfortunately, this triad turned out to be rather photolabile. Interestingly, coupling between the oxidized PTZ(.+) and the BQ(.-) moieties seemed to occur. This discouraged further extension to incorporate more redox active units. Finally, in the dyad PTZ-Ru-II a reversible, near isoergonic electron transfer was observed on excitation. Thus, a quasiequilibrium was established with an observed time constant of 7 ns, with ca. 82% of the population in the PTZ-Ru-*(II) state and 18% in the PTZ(.+)Ru(II)(bpy(.-)) state. These states decayed in parallel with an observed lifetime of 90 ns. The initial electron transfer to form the PTZ(.+)-Ru-II(bpy(.-)) state was thus faster than what would have been inferred from the Ru-*(II) emission decay (tau = 90 ns). This result suggests that reports for related PTZ-Ru-II and PTZ-Ru-II-acceptor complexes in the literature might need to be reconsidered.