화학공학소재연구정보센터
Inorganic Chemistry, Vol.42, No.19, 6136-6141, 2003
DFT studies of uranyl acetate, carbonate, and malonate, complexes in solution
The aim of this work is to demonstrate that theoretical chemistry can be used as a complementary tool in determining geometric parameters of a number of uranyl complexes in solution, which are not observable by experimental methods. In addition, we propose plausible structures with partial geometric data from experimental results. A gradient corrected DFT methodology with relativistic effects is used employing a COSMO solvation model. The theoretical calculations show good agreement with experimental X-ray and EXAFS data for the triacetato-dioxo-uranium(VI) and tricarbonato-dioxo-uranium(VI) complexes and are used to assign possible geometries for dicalcium-tricarbonato-dioxo-uranium(VI) and malonato-dioxo-uranium(VI) complexes. The results of this exercise indicate that carbonate bonding in these complexes is mainly bidentate and that hydroxo bridging plays a critical role in the stabilization of the polynuclear uranyl complexes.