International Journal of Control, Vol.76, No.11, 1059-1069, 2003
Parameter optimization in iterative learning control
In this paper parameter optimization through a quadratic performance index is introduced as a method to establish a new iterative learning control law. With this new algorithm, monotonic convergence of the error to zero is guaranteed if the original system is a discrete-time LTI system and it satisfies a positivity condition. If the original system is not positive, two methods are derived to make the system positive. The effect of the choice of weighting parameters in the performance index on convergence rate is analysed. As a result adaptive weights are introduced as a method to improve the convergence properties of the algorithm. A high-order version of the algorithm is also derived and its convergence analysed. The theoretical findings in this paper are highlighted with simulations.