Journal of Colloid and Interface Science, Vol.262, No.2, 321-330, 2003
Equilibrium study of selected divalent d-electron metals adsorption on A-type zeolite
The objective of the presented study was to investigate the adsorption of Cu, Co, Mn, Zn, Cd and Mn on A-type zeolite. The isotherms for adsorption of metals from their nitrates were registered. The following adsorption constants K of metals were found: 162,890, 124,260, 69,025, 16,035, 10,254, and 151 [M-1] for Cu, Co, Mn, Zn, Cd, and Ni, respectively, for the concentration range 10(-4)-10(-3) M. On the other hand, the investigation of pH influence on the distribution constants of metals showed that the adsorption of metals proceeds essentially through an ion-exchange process, surface hydrolysis, and surface complexation. The supplementary results from DRIFT, scanning electron microscopy, and X-ray diffraction methods confirmed the presumption about the possible connection between the electronic structure of divalent ions and their adsorption behavior, showing that ions with d(5) and d(10) configurations such as Mn2+, Zn2+, Cd2+, with much weaker hydrolytic properties than Cu2+ and Ni2+, strongly interact with the zeolite framework and therefore their affinity to the zeolite phase is much stronger when compared with that of the Ni2+ ion, but at the same time not as strong as the affinity of the Cu2+ ion, the latter forming a new phase during the interaction with zeolite framework. For Zn2+, during inspection of the correlation between the proton concentration H/Al and zinc concentration Zn/Al on the zeolite surface, the formation of the surface complex dropS-OZn(OH) was proposed. A correlation between the heterogeneity of proton concentrations H/Al on Me-zeolite surfaces and the hydrolysis constants pK(h) of Me2+ ions was found. (C) 2003 Elsevier Science (USA). All rights reserved.