Journal of Colloid and Interface Science, Vol.264, No.1, 221-227, 2003
Interfacial effects in the spreading kinetics of liquid droplets on solid substrates
Several theories deal with the spreading kinetics of liquids on solid substrate, most of which relate the rate of spreading to the surface tension and the viscosity of the liquid. Measurements of the spreading of a number of liquids exhibiting a wide range of surface tension and viscosity on dry soda-time glass have been carried out to validate the proposed models. The measurements used a small droplet of constant volume to minimize gravitational effects. The contact radius was acquired as a function of time by an image analysis system. It was noted that power law theories describe the spreading rate for silicone oil on glass. However, significant departures were noted in the case of other liquids. Mechanistic considerations of our data suggest that equal volume droplets of similar surface tension and of diverse viscosity spread to the same area but at different rates. On the other hand, the spreading rate of glycerine, which exhibits incomplete spreading on glass, and that of silicone oil, with comparable viscosity behave similarly. These observations seemingly support the view that surface tension acts to retain the spherical shape of the droplet, whereas the difference between the solid-liquid and solid-vapor interfacial energies acts to enlarge the contact area. In the meantime, viscous dissipation acts to retard the spreading rate, past a constant rate regime. (C) 2003 Elsevier Inc. All rights reserved.