Applied Microbiology and Biotechnology, Vol.62, No.4, 337-341, 2003
Regioselective hydroxylation of quinolinic acid, lutidinic acid and isocinchomeronic acid by resting cells of pyridine dicarboxylic acid-degrading microorganisms
Microorganisms aerobically degrading quinolinic acid, lutidinic acid or isocinchomeronic acid were isolated and the microbial regioselective hydroxylation of these pyridine dicarboxylic acids was studied. Alcaligenes sp. UK21 cells converted quinolinic acid into 6-hydroxypicolinic acid, suggesting the involvement of two enzyme reactions catalyzing hydroxylation at position C6 and decarboxylation at position C3 of quinolinic acid. Resting cells of Alcaligenes sp. UK21 accumulated 94.9 mM 6-hydroxypicolinic acid (13.2 g l(-1)), with a 96% molar conversion yield by 48 h incubation. Rhizobium sp. LA17 and Hydrogenophaga sp. IMA01 catalyzed the regioselective hydroxylation of lutidinic acid and isocinchomeronic acid into 6-hydroxylutidinic acid and 6-hydroxyisocinchomeronic acid, respectively. 6-Hydroxylutidinic acid accumulated up to 95.4 mM (17.5 g l(-1)) by 24 h incubation in the resting cells reaction, using Rhizobium sp. LA17, with a 99% molar conversion yield. Resting cells of Hydrogenophaga sp. IMA01 produced 88.7 mM 6-hydroxyisocinchomeronic acid (16.2 g l(-1)) by 24 h incubation, with a 81% molar conversion yield.