Combustion and Flame, Vol.134, No.4, 399-409, 2003
A simple model for explosive combustion of premixed natural gas with air in a bubbling fluidized bed of inert sand
The combustion of premixed natural gas and air has been studied in a bubbling fluidized bed of inert particles. The temperature of the solids was carefully monitored, using 8 thermocouples, immersed in the bed at different heights. The observed temperature profiles were used to find the height above the distributor at which most of the combustion occurred and on this basis a clear distinction could be made between combustion above the bed and inside the bed. The region where most of the heat of combustion is evolved depends on the average bed temperature. If this temperature is low, the gases burn above the bed or just under its upper surface, but at higher temperatures the process is located close to the distributor. Rapid fluctuations in the measured temperature and pressure indicate that the process inside the bed is not a steady one. The model developed here assumes that combustion takes place inside bubbles of premixed gases, as they move through the bed. A detailed chemical kinetic model was used to calculate the induction period for ignition. The model can predict the height above the distributor at which bubbles should ignite and explode. Comparison of the experimental results with the modeling calculations indicates that the course taken by the process depends on temperature. At the lowest temperatures, the gases burn above the bed. In the high temperature range, where the bubbles ignite is determined by the induction period. At intermediate temperatures the location of the reaction is determined by the depth of the bed and bubble size, with ignition spreading from above the bed to bubbles, which are about to leave, but are still in the bed. That bubbles explode at different heights up the bed is reflected in the acoustic signals registered above and below the bed. The associated changes in the composition of the flue gases are also very characteristic. (C) 2003 The Combustion Institute. All rights reserved.