화학공학소재연구정보센터
International Journal of Control, Vol.76, No.15, 1508-1515, 2003
Adaptive one-step-ahead control for non-minimum phase systems with input magnitude and rate constraints
The adaptive control design for linear stable plants with input magnitude and rate constraints is addressed. The proposed algorithm adopts the self-tuning regulator (STR) adaptive control principle with one-step-ahead control as its underlying control design. An important governing equation relating the prediction error to the 'input discrepancy' between adaptive control and the corresponding non-adaptive control is identified, independent of how the parameter estimates are attained. Together with the convergence property of least-square type estimation algorithm, the governing equation leads to a successful analysis on the convergence and tracking performance of the adaptive constrained one-step-ahead controller. Specifically, globally input matching property is maintained in the sense that the adaptive constrained control asymptotically matches its corresponding non-adaptive one. Furthermore, the desired tracking performance of the adaptive controller can be achieved asymptotically if the corresponding non-adaptive control is eventually out of the constraints. The proposed adaptive control is applicable to both minimum and non-minimum phase stable systems.