화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.37, No.4, 547-556, August, 1999
Weeping현상을 고려한 회분식 증류공정의 운전개시 절차 상세 동적모사
Rigorous Dynamic Simulation of Startup Procedures of Batch Distillation Processes Considering Weeping
초록
벤젠과 톨루엔을 분리하는 회분식 증류공정의 다양한 공정장치를 비롯한 물성값 계산 및 운전개시 절차의 상세한 수학적 모델을 수립하고 동적모사를 하였다. 수학적 모델은 물질 및 에너지 수지를 비롯한 1,200여 개의 미분대수방정식으로 표현되었으며, 운전개시 절차에서의 이산사건을 순차적으로 구성하여 동적모사에 반영하였다. 증류탑 각 단(tray)에서의 물질 및 에너지 수지는 Francis weir 방정식 및 수력학적 관계식뿐만 아니라 체단(sieve tray)의 weeping 유량 예측을 위한 실험적 상관관계식을 포함하여 운전개시에 따른 증류탑 내부의 동적거동을 상세히 표현하도록 하였다. 대상 공정의 동적모사는 증류탑 각 단 및 환류드럼(reflux drum)의 액상 holdup이 존재하지 않은 상태에서 시작하였으며, 환류가 시작되어 물질의 분리가 이루어지는 정상운전 단계까지 수행되었다. 그 결과로 대상 공정의 운전개시에 따른 증류탑 및 그 주변 장치들의 공정변수뿐만 아니라 열역학적 상태변수들의 다양한 변화를 예측할 수 있었으며, 특히 각 단에서의 weeping 유량을 예측함으로써 운전개시 단계에서의 증류탑 내부의 비이상성을 보다 상세히 규명할 수 있었다. 본 연구에서 얻어진 수치적 데이터는 공정 설계에 이용되어 공정 운전의 안전성 및 효율성을 높이는데 기여할 수 있다.
For batch distillation processes separating a binary mixture of benzene and toluene, we develop rigorous mathematical models of various process devices, physical properties and startup procedures, and simulate them dynamically. The mathematical models include about 1200 differential algebraic equations, and the dynamic simulation includes discrete events of startup procedures sequentially. To show the dynamic behaviors of distillation column internal rigorously following the startup speration, the material and energy balances of every tray in distillation column contain lots of correlations such as Francis weir equation, hydraulics and correlations of predicting weeping rate in sieve trays. The dynamic simulation of the target processes starts with the initial condition of zero holdup of liquid phase at every tray and the reflux drum, and it continues until the beginning of normal operation in which the two components start being separated by the reflux. As results, various dynamic behaviors of thermodynamic variables, process variables and surrounding installations are observed, and the non-ideality of column internal is revealed more rigorously with the prediction of the weeping rate of each tray. The numerical data from this study are expected to be applicable to improving the safety and the efficiency of industrial design.
  1. Holland CD, Athanasios IL, "Computer Methods for Solving Dynamic Separation Problems," McGraw-Hill, New York (1983)
  2. Barton PI, Ph.D. Dissertation, Centre for Process Systems Engineering, Imperial College, London, United Kingdom (1993)
  3. Oh M, Ph.D. Dissertation, Centre for Process Systems Engineering, Imperial College, London, United Kingdom (1995)
  4. Oh M, Moon JK, HWAHAK KONGHAK, 36(5), 764 (1998)
  5. Oh M, Jang EJ, Moon JK, HWAHAK KONGHAK, 36(1), 109 (1998)
  6. Oh M, Moon JK, HWAHAK KONGHAK, 36(2), 196 (1998)
  7. Oh M, Jan EJ, HWAHAK KONGHAK, 35(5), 791 (1997)
  8. Hwang D, Oh M, Moon I, HWAHAK KONGHAK, 36(2), 151 (1998)
  9. Park SY, Oh M, Moon I, HWAHAK KONGHAK, 34(5), 585 (1996)
  10. Oh SC, Oh YS, Yeo YK, Korean J. Chem. Eng., 12(3), 366 (1995)
  11. Olsen I, Endrestol GO, Sira T, Comput. Chem. Eng., 21(S), 193 (1997)
  12. Furlonge HI, Sorensen E, Pantelides CC, Paper Presented at the 1998 AIChE Annual Meeting, Florida, November (1998)
  13. Kister HZ, "Distillation Design," McGraw-Hill, New York (1992)
  14. Colwell CJ, O'Bara JT, Paper Presented at the AIChE National Spring Meeting, Houston, April (1989)
  15. Lockett MJ, Banik S, Ind. Eng. Chem. Process Des. Dev., 25, 561 (1986) 
  16. Reid RC, Prausnitz JM, Poling BE, "The Properties of Gases & Liquids," 4th ed., McGraw-Hill, New York (1987)
  17. Jarvis RB, Ph.D. Dissertation, Centre for Process Systems Engineering, Imperial College, London, United Kingdom (1993)