Combustion and Flame, Vol.135, No.3, 249-259, 2003
Simulation of a toroidal jet-stirred combustor using a partially stirred reactor model with detailed kinetic mechanisms
The detailed chemistry in a jet-stirred laboratory combustor has been computed with a partially stirred reactor (PaSR) model that uses interaction by exchange with the mean as a turbulent moment closure to simulate finite time micro-mixing. Ideal macro-mixing is assumed as characterized by an exponential residence time distribution. Local conditions are relaxed toward the mean at a rate defined by the mixing frequency that is a ratio of the turbulent dissipation to the turbulent mixing energy. The solution technique approximates mean conditions, and solves the deterministic model to refine the approximation, and eventually converge on a solution. The approximation and convergence technique compared favorably with the Monte Carlo modeling calculations presented in the literature, while using, on average, less than 1/100th of the CPU time. The comparison of PaSR model predictions to literature experimental data from a toroidal jet-stirred laboratory combustor operating in both fuel-lean and fuel-rich conditions also showed reasonable agreement with data. Moreover, the PaSR proved valuable as a research tool. It provided an indication of the sensitivity of reactor kinetics to the effects of micro-mixing delay, and predicted temperature and species distributions, while using detailed thermo-kinetic mechanisms. These features, which are beyond the scope of the perfectly stirred reactor (PSR) model, are provided within reasonable computational times. (C) 2003 The Combustion Institute. All rights reserved.
Keywords:micro-mixing;partially stirred reactor model;turbulent combustion;thermo-kinetic mechanisms;stirred reactor