화학공학소재연구정보센터
Inorganic Chemistry, Vol.42, No.23, 7357-7359, 2003
Turning off phototriggered linkage isomerizations in ruthenium dimethyl sulfoxide complexes
We report on the spectroscopy, electrochemistry, and linkage isomerization in a family of [Ru(tpy)(L2)(dmso)](z+) complexes (tpy is 2,2':6',2"-terpyridine, dmso is dimethyl sulfoxide, and L2 is a variable ligand: 2,2'-bipyridine (bpy), 2-picolinate (pic), N,N,N',N'-tetramethylethylenediamine (tmen), acetylacetonate (acac), or malonate (mal)). The identity of this bidentate ligand serves to tune the absorption maxima (lambda(max) = 419-502 nm) and the reduction potential (E-1/2 = 1.67 to 0.82 V) of these complexes. Photochemical and electrochemical studies show that S-->O and O-->S linkage isomerization may be triggered through an electron transfer mechanism, resulting in dramatic shifts in both the absorption maxima and the reduction potential (for [Ru(tpy)(pic)(dmso)](+) S-bonded, 421 nm, 1.38 V vs Ag/AgCl; O-bonded, 527 nm, 1.38 V vs Ag/AgCl). Certain of these complexes [Ru(tpy)(acac)(dmso)](+) and [Ru(tpy)(mal)(dmso)] do not undergo isomerization. These results are discussed in the context of electron transfer triggered isomerization.