화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.9, No.6, 704-712, November, 2003
The Reactivity of the Solvated Electrons with KNO3 in tert-Butanol/Water Mixtures
E-mail:
The reactivity of the solvated electrons (es-) with a charged scavenger in tert-butanol/water mixtures is analyzed according to the effective reaction radius (kRr) and the effective diffusion radius (Rd). In tert-butanol/water mixtures, the effective reaction radius (kRr) for the reaction (es- + NO3-) decreases rapidly first, and then tends to increase gradually upon addition of alcohol to water. kRr increases as the reaction temperature increases at 0.64 ≤ Xw < 0.90 of the mole fraction of water (Xw), but decreases as the reaction temperature increases at 0.90 < Xw ≤ 1.00. kRr is dependent on the probability of the reaction per encounter pair (k). The values of kRr for the reaction (es- + NO3-) are 0.20 ~ 0.39 nm at 0.64 ≤ Xw ≤ 1.00 and 298.15 ≤ T(K) ≤ 348.15. The effective diffusion radius (Rd) for the reaction (es- + NO3-) in tert-butanol/water mixtures increases as the reaction temperature increases, and the minimum value of Rd is shifted from Xw 0.85 to 0.94 as the reaction temperature increases from 298.15 K to 348.15 K. The values of Rd are larger in the alcohol-rich region than in the water-rich region owing to the larger size of the solvent molecules that solvate ions. The values of Rd for the reaction (es- + NO3-) are 23.12 ~ 64.12 pm at 0.64 ≤ Xw ≤ 1.00 and 298.15 ≤ T(K) ≤ 348.15.
  1. Milosavljevic BH, Micic OI, J. Phys. Chem., 82(12), 1359 (1978)
  2. Berntolini D, Cassettori M, Salvetti G, J. Chem. Phys., 78, 365 (1983)
  3. Nakanishi K, Ikari K, Okazaki S, Touhara H, J. Chem. Phys., 80, 1656 (1984)
  4. Senanayake PC, Freeman GR, J. Chem. Phys., 87(12), 7007 (1987)
  5. Maham Y, Greeman GR, Can. J. Chem., 66, 1706 (1988)
  6. Maham Y, Freeman GR, J. Phys. Chem., 89(20), 4347 (1985)
  7. Maham Y, Freeman GR, J. Phys. Chem., 92(6), 1506 (1988)
  8. Chen R, Freeman GR, Can. J. Chem., 71, 1303 (1993)
  9. Afanassiev AM, Okazaki K, Freeman GR, Can. J. Chem., 57, 839 (1979)
  10. Leu AD, Jha KN, Freeman GR, Can. J. Chem., 60, 2342 (1982)
  11. Leu AD, Jha KN, Freeman GR, Can. J. Chem., 61, 1115 (1983)
  12. Tanaka H, Nakanishi K, Touhara H, J. Chem. Phys., 81(9), 4065 (1984)
  13. Bender TM, Pecora RJ, J. Phys. Chem., 90(8), 1700 (1986)
  14. Senanayake PC, Freeman GR, J. Phys. Chem., 91(8), 2123 (1987)
  15. Senanayake PC, Freeman GR, J. Phys. Chem., 92(18), 5142 (1988)
  16. Lai Cc, Freeman GR, J. Phys. Chem., 94(1), 302 (1990)
  17. Zhao Y, Freeman GR, Can. J. Chem., 73, 392 (1995)
  18. Afanassiev AM, Okazaki K, Freeman GR, J. Phys. Chem., 83(10), 1244 (1979)
  19. Jou FY, Freeman GR, Can. J. Chem., 57, 592 (1979)
  20. Kang TB, Freeman GR, Can. J. Chem., 71, 1297 (1993)
  21. Senanayake PC, Ph.D. Thesis, Alberta University, Canada (1987)
  22. Timmermans J, The Physico-Chemical Constants of Binary Systems in Concentrated Solutions, Vol. 4, p. 235, Interscience, New York (1960)
  23. Lide DR, Handbook of Chemistry and Physics, 74th Edn., pp. 5-91, CRC, London (1993)
  24. Barker GC, Fowles P, Sammon DC, Stringer B, Trans. Faraday Soc., 66, 1498 (1970) 
  25. Hart EJ, Anbar M, The Hydrated Electron., Wiley-Interscience, New York (1970)