Journal of Industrial and Engineering Chemistry, Vol.9, No.6, 704-712, November, 2003
The Reactivity of the Solvated Electrons with KNO3 in tert-Butanol/Water Mixtures
E-mail:
The reactivity of the solvated electrons (es-) with a charged scavenger in tert-butanol/water mixtures is analyzed according to the effective reaction radius (kRr) and the effective diffusion radius (Rd). In tert-butanol/water mixtures, the effective reaction radius (kRr) for the reaction (es- + NO3-) decreases rapidly first, and then tends to increase gradually upon addition of alcohol to water. kRr increases as the reaction temperature increases at 0.64 ≤ Xw < 0.90 of the mole fraction of water (Xw), but decreases as the reaction temperature increases at 0.90 < Xw ≤ 1.00. kRr is dependent on the probability of the reaction per encounter pair (k). The values of kRr for the reaction (es- + NO3-) are 0.20 ~ 0.39 nm at 0.64 ≤ Xw ≤ 1.00 and 298.15 ≤ T(K) ≤ 348.15. The effective diffusion radius (Rd) for the reaction (es- + NO3-) in tert-butanol/water mixtures increases as the reaction temperature increases, and the minimum value of Rd is shifted from Xw 0.85 to 0.94 as the reaction temperature increases from 298.15 K to 348.15 K. The values of Rd are larger in the alcohol-rich region than in the water-rich region owing to the larger size of the solvent molecules that solvate ions. The values of Rd for the reaction (es- + NO3-) are 23.12 ~ 64.12 pm at 0.64 ≤ Xw ≤ 1.00 and 298.15 ≤ T(K) ≤ 348.15.
Keywords:solvated electron scavenger;molar conductivity;effective reaction radius;effective diffusion radius
- Milosavljevic BH, Micic OI, J. Phys. Chem., 82(12), 1359 (1978)
- Berntolini D, Cassettori M, Salvetti G, J. Chem. Phys., 78, 365 (1983)
- Nakanishi K, Ikari K, Okazaki S, Touhara H, J. Chem. Phys., 80, 1656 (1984)
- Senanayake PC, Freeman GR, J. Chem. Phys., 87(12), 7007 (1987)
- Maham Y, Greeman GR, Can. J. Chem., 66, 1706 (1988)
- Maham Y, Freeman GR, J. Phys. Chem., 89(20), 4347 (1985)
- Maham Y, Freeman GR, J. Phys. Chem., 92(6), 1506 (1988)
- Chen R, Freeman GR, Can. J. Chem., 71, 1303 (1993)
- Afanassiev AM, Okazaki K, Freeman GR, Can. J. Chem., 57, 839 (1979)
- Leu AD, Jha KN, Freeman GR, Can. J. Chem., 60, 2342 (1982)
- Leu AD, Jha KN, Freeman GR, Can. J. Chem., 61, 1115 (1983)
- Tanaka H, Nakanishi K, Touhara H, J. Chem. Phys., 81(9), 4065 (1984)
- Bender TM, Pecora RJ, J. Phys. Chem., 90(8), 1700 (1986)
- Senanayake PC, Freeman GR, J. Phys. Chem., 91(8), 2123 (1987)
- Senanayake PC, Freeman GR, J. Phys. Chem., 92(18), 5142 (1988)
- Lai Cc, Freeman GR, J. Phys. Chem., 94(1), 302 (1990)
- Zhao Y, Freeman GR, Can. J. Chem., 73, 392 (1995)
- Afanassiev AM, Okazaki K, Freeman GR, J. Phys. Chem., 83(10), 1244 (1979)
- Jou FY, Freeman GR, Can. J. Chem., 57, 592 (1979)
- Kang TB, Freeman GR, Can. J. Chem., 71, 1297 (1993)
- Senanayake PC, Ph.D. Thesis, Alberta University, Canada (1987)
- Timmermans J, The Physico-Chemical Constants of Binary Systems in Concentrated Solutions, Vol. 4, p. 235, Interscience, New York (1960)
- Lide DR, Handbook of Chemistry and Physics, 74th Edn., pp. 5-91, CRC, London (1993)
- Barker GC, Fowles P, Sammon DC, Stringer B, Trans. Faraday Soc., 66, 1498 (1970)
- Hart EJ, Anbar M, The Hydrated Electron., Wiley-Interscience, New York (1970)