Journal of Chemical Physics, Vol.120, No.1, 475-485, 2004
Microscopic theory of orientational order, structure and thermodynamics in strained polymer liquids and networks
A microscopic integral equation theory of the segmental orientational order parameter, structural correlations and thermodynamics of strained polymer solutions, melts and networks has been developed. The nonclassical problem of the consequences of intermolecular excluded volume repulsions and chain connectivity is addressed. The theory makes several novel predictions, including effective power law dependences of the orientational order parameter on monomer concentration and chain degree of polymerization, and strain hardening of the bulk modulus. The predictions of a nearly classical strain dependence, and supralinear scaling with segment concentration, of the strain-induced nematic order parameter is in agreement with nuclear magnetic resonance experiments. The absolute magnitudes of the a priori calculated orientational order parameter agree with simulations and experiments to within a factor of 2. The possible complicating influence of "trapped entanglements" in crosslinked networks is discussed. Extensions of the theory are possible to treat the mechanical response of flexible polymer liquids and rubbers, and the structure, thermodynamics, and mechanical properties of strained liquid crystal forming polymers. (C) 2004 American Institute of Physics.