Journal of the American Chemical Society, Vol.125, No.52, 16322-16326, 2003
A mechanism-based inhibitor targeting the DD-transpeptidase activity of bacterial penicillin-binding proteins
Penicillin-binding proteins (PBPs) are responsible for the final stages of bacterial cell wall assembly. These enzymes are targets of beta-lactam antibiotics. Two of the PBP activities include DD-transpeptidase and DD-carboxypeptidase activities, which carry out the cross-linking of the cell wall and trimming of the peptidoglycan, the major constituent of the cell wall, by an amino acid, respectively. The activity of the latter enzyme moderates the degree of cross-linking of the cell wall, which is carried out by the former. Both these enzymes go through an acyl-enzyme species in the course of their catalytic events. Compound 6, a cephalosporin derivative incorporated with structural features of the peptidoglycan was conceived as an inhibitor specific for DD-transpeptidases. On acylation of the active sites of DD-transpeptidases, the molecule would organize itself in the two active site subsites such that it mimics the two sequestered strands of the bacterial peptidoglycan en route to their cross-linking. Hence, compound 6 is the first inhibitor conceived and designed specifically for inhibition of DD-transpeptidases. The compound was synthesized in 13 steps and was tested with recombinant PBP1b and PBP5 of Escherichia coli, a DD-transpeptidase and a DD-carboxypeptidase, respectively. Compound 6 was a time-dependent and irreversible inhibitor of PBP1b. On the other hand, compound 6 did not interact with PBP5, neither as an inhibitor (reversible or irreversible) nor as a substrate.