화학공학소재연구정보센터
Macromolecular Research, Vol.12, No.1, 85-93, February, 2004
Preparation and Properties of in situ Polymerized Poly(ethylene terephthalate)/Fumed Silica Nanocomposites
E-mail:
We have prepared poly(ethylene terephthalate) (PET) nanocomposites filled with two different types of fumed silicas, hydrophilic (FS) and hydrophobic (MFS) silicas of 7-nm diameter, by in situ polymerization. We then investigated the morphological changes, rheological properties, crystallization behavior, and mechanical properties of the PET nanocomposites. Transmission electron microscopy (TEM) images indicate that the dispersibility of the fumed silica was improved effectively by in situ polymerization; in particular, MFS had better dispersibility than FS on the non-polar PET polymer. The crystallization behavior of the nanocomposites revealed a peculiar tendency: all the fillers acted as retarding agents for the crystallization of the PET nanocomposites. The incorporation of fumed silicas increased the intrinsic viscosities (IV) of the PET matrix, and the strong particleparticle interactions of the filler led to an increased melt viscosity. Additionally, the mechanical properties, toughness, and modulus of the nanocomposites all increased, even at low filler content.
  1. Cho JW, Paul DR, Polymer, 42(3), 1083 (2001) 
  2. Fornes TD, Yoon PJ, Keskkula H, Paul DR, Polymer, 42(25), 9929 (2001) 
  3. Kojima Y, Usaki A, Kawasumi M, Okata A, Kurauchi T, Kamigaito O, J. Appl. Polym. Sci., 49, 1259 (1993) 
  4. Chang JH, Seo BS, Hwang DH, Polymer, 43(10), 2969 (2002) 
  5. Ryu JG, Lee JW, Kim H, Macromol. Res., 10(4), 187 (2002)
  6. Messersmith PB, Giannelis EP, J. Polym. Sci. A: Polym. Chem., 33(7), 1047 (1995) 
  7. Technical Bulletin Pigments No. 11, Degussa-Huls AG, Frankfurt am Main, Germany (1989)
  8. Barthel H, Colloids Surf. A: Physicochem. Eng. Asp., 101, 217 (1995) 
  9. Donnet JB, Wang MJ, Papirer E, Vidal A, Kautsch. Gummi Kunstst., 39, 510 (1986)
  10. Ettlinger M, Ladwig T, Weise A, Prog. Org. Coat., 40, 31 (2000) 
  11. Chung SC, Hahm WG, Im SS, Oh SG, Macromol. Res., 10(4), 221 (2002)
  12. Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J, Polymer, 42(21), 8759 (2001) 
  13. Yang F, Ou YC, Yu ZZ, J. Appl. Polym. Sci., 69(2), 355 (1998) 
  14. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K, Polymer, 42(1), 167 (2001) 
  15. Lux HG, Meier K, Muller A, Oelmuller R, Ramb A, U.S. Patent, 6,191,122 B1 (2001)
  16. Nielsen LE, Landel RF, Mechanical Properties of Polymers and Composites, Marcel Dekker, New York (1994)
  17. Han CD, Kim J, Kim JK, Macromolecules, 22, 383 (1989) 
  18. Avrami M, J. Chem. Phys., 7, 1103 (1939) 
  19. Avrami M, J. Chem. Phys., 8, 212 (1939) 
  20. Avrami M, J. Chem. Phys., 9, 177 (1939) 
  21. Friendlander HZ, Frick CR, J. Polym. Sci. B: Polym. Phys., 2, 475 (1964)
  22. Wunderlich B, Macromolecular Physics: Crystal Melting, Academic, New York, Vol. 3 (1980)
  23. Lewis TB, Nielsen LE, J. Appl. Polym. Sci., 14, 1449 (1970) 
  24. Nielsen LE, J. Appl. Phys., 41, 4626 (1970) 
  25. McGee S, McCullough RL, Polym. Compos., 2, 149 (1981) 
  26. Katz HS, Milewski JV, Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold, New York (1978)
  27. Breuning JJ, Johnson RD, Morris GK, U.S. Patent, 531,976 (1984)