Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.2, 211-215, April, 2004
개질 벤토나이트를 이용한 에폭시 수지 나노복합재료의 기계적 특성
Mechanical Characteristics of Epoxy Nanocomposite with Modified Bentonite
E-mail:
초록
Ca-형 천연 벤토나이트를 정제하고, Na-형으로 개질한 후, 다양한 종류의 아민 및 알킬암모늄염 유기화제로 처리하여서 에폭시 수지에 도입하였다. 벤토나이트 실리케이트 층의 박리현상을 연구하기 위해서X-선회절(XRD) 및 투과전자현미경(TEM) 분석을 하였다. 제조된 에폭시/유기화 벤토나이트 나노복합재료의 유리전이 온도(Tg), 인장강도, Young의 탄성율, 굴곡강도 및 굴곡탄성율을 측정하였다. 유기화제 알킬기의 사슬길이가 증가함에 따라서 실리케이트 층의 박리가 더 잘 일어남으로써 나노복합재료 형성에 더 유리하였고, 나노복합재료가 형성된 계에서는 유기화 벤토나이트의 함량이 증가함에 따라서 모든 물성들이 향상되었다.
Na-type bentonite prepared by purifying and modifying the Ca-type natural bentonite was treated with various types of amines or alkylammonium salts, and incorporated into epoxy resin system. To investigate the exfoliation of silicate interlayer of bentonite, X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses were performed. The glass transition temperature (Tg), tensile strength, Young's modulus, and flexural strength and modulus for the synthesized epoxy/organobentonite were also measured. The longer the chain length of alkyl group in the organosurfactants was, the easier exfoliation of silicate interlayers took place, and the better nanocomposite was given. In the synthesized nanocomposites, all the properties were improved as the loading content of organobentonite increased.
- Hwu JYHM, Jiang GJ, Gao ZM, Xie W, Pan WP, J. Appl. Polym. Sci., 83(8), 1702 (2002)
- Nomura T, Matsuda M, Nagai T, Toyota Tech. Rev., 48, 27 (1998)
- Kato M, Okamoto H, Hasegawa N, Usuki A, Sato N, Proc. 6th Japan International SAMPE Symposium, Oct., 693 (1999)
- Suh DJ, Park OO, J. Appl. Polym. Sci., 83(10), 2143 (2002)
- Artzi N, Nir Y, Narkis M, Siegmann A, J. Polym. Sci. B: Polym. Phys., 40(16), 1741 (2002)
- Tyan HL, Wei KH, Hsieh TE, J. Polym. Sci. B: Polym. Phys., 38(22), 2873 (2000)
- Okada A, Kawasumi M, Kurauchi T, Kamingaito O, Polym. Prepr., 28, 447 (1987)
- Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A, J. Appl. Polym. Sci., 67(1), 87 (1998)
- Oya A, Kurokawa Y, Yasuda H, J. Mater. Sci., 35(5), 1045 (2000)
- Zhang LQ, Wang YZ, Wang YQ, Sui Y, Yu DS, J. Appl. Polym. Sci., 78(11), 1873 (2000)
- Jimenez G, Ogata N, Kawai H, Ogihara T, J. Appl. Polym. Sci., 64(11), 2211 (1997)
- Agag T, Koga T, Takeichi T, Polymer, 42(8), 3399 (2001)
- Zhu J, Start P, Mauritz KA, Wilkie CA, J. Polym. Sci. A: Polym. Chem., 40(10), 1498 (2002)
- Alexandre M, Dubois P, Mater. Sci. Eng., 28, 1 (2000)
- Wang KH, Choi MH, Koo CM, Xu MZ, Chung IJ, Jang MC, Choi SW, Song HH, J. Polym. Sci. B: Polym. Phys., 40(14), 1454 (2002)
- Lan T, Kaviratna PD, Pinnavaia TJ, Chem. Mater., 7, 2144 (1995)
- Shi H, Lan T, Pinnavaia TJ, Chem. Mater., 8, 1584 (1996)
- Messersmith PB, Giannelis EP, Chem. Mater., 6, 1719 (1994)
- Zilg C, Mlhaupt R, Finter J, Macromol. Chem. Phys., 200, 661 (1999)
- Lee JY, Rim HR, Shim MJ, Lee HK, J. Korean Ind. Eng. Chem., 14(6), 769 (2003)