화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.10, No.2, 273-277, March, 2004
Thermodynamic Studies of Interaction between Chitosan and Metal Ions by Isothermal Titration Calorimetry (I)
E-mail:
In this work, the thermodynamic data for the interactions between various metal ions (Cu2+, Fe2+, Cd2+, Zn2+, Ca2+ and Mn2+) and chitosan were measured directly by Isothermal Titration Calorimetry(ITC). Chitosan [poly (D-glucosamine), >75% deacetylation, 800-2000 cps] was mixed with stock solutions of Cu2+, Fe2+, Cd2+ and Zn2+, prepared in 0.1 M HNO3, and of Ca2+ and Mn2+, in 0.1 M HCl. ITC directly estimates the binding thermodynamics through the measurement of the energetics of molecular interactions at constant temperature. It provides the number of binding sites, the binding constant, and the enthalpy of binding. We found that in the chelation of most metal ions by chitosan, 1:1 binding of chitosan is more dominant than 2:1, cooperative binding, but vice versa for Zn2+ and Cd2+. The reactivity between metal ions and chitosan decreases in the order Cu2+ > Fe2+ > Zn2+ > Cd2+. The chelation of Cu2+ by chitosan shows much higher reactivity when compared to other divalent metal ions (Fe2+, Zn2+, or Cd2+). Four metal ions (Cu2+, Fe2+, Cd2+ and Zn2+) that we investigated in this experiment show strong reactivity and stability. In contrast, the interactions between Ca2+ and Mn2+ and chitosan can almost be neglected.
  1. Eiden CA, Jewell CA, Whightman JP, J. Appl. Polym. Sci., 25, 1587 (1980)
  2. Inoue K, Baba Y, Yoshizuka K, Bull. Chem. Soc. Jpn., 66, 2915 (1993)
  3. Janson-Charrier M, Guibal E, Roussy J, Delanghe B, Cloirec PL, Water Res., 30, 465 (1996)
  4. Maruca R, Sudder BJ, Wightman JP, J. Appl. Polym. Sci., 27, 4827 (1982)
  5. Guibal E, Janssoncharrier M, Saucedo I, Lecloirec P, Langmuir, 11(2), 591 (1995)
  6. Hsien TY, Rorrer GL, Ind. Eng. Chem. Res., 36(9), 3631 (1997)
  7. Ngah WSW, Isa IM, J. Appl. Polym. Sci., 67(6), 1067 (1998)
  8. Ohga K, Kurauchi Y, Yanase H, Bull. Chem. Soc. Jpn., 60, 444 (1987)
  9. Peniche-Covas C, Alvarez LW, Arguelles-Monal W, J. Appl. Polym. Sci., 46, 1147 (1992)
  10. Udaybhaskar P, Iyengar L, Rao AVSP, J. Appl. Polym. Sci., 39, 739 (1990)
  11. Hirano S, Sato N, Yoshida S, Kitagawa S, Progress in Biotechnology 3: Industrial Polysaccharides: Genetic Engineering, Structure/Property Relations and Applications, Yalpani, M., Ed., pp. 163-176, Elsevier Science: Amsterdam (1987)
  12. Kurita K, Chitin in Nature and Technology, R.A.A. Muzzarelli, C. Jeuniaux, G.W. Gooday, Ed., pp. 469-476, Plenum Press: New York (1986)
  13. Muzzarelli RAA, Carbohydr. Polym., 3, 53 (1983)
  14. Ha BJ, Lee OS, Lee YS, J. Ind. Eng. Chem., 1(1), 57 (1995)
  15. Kim CH, Choi KS, J. Ind. Eng. Chem., 4(1), 19 (1998)
  16. Li Q, Dunn ET, Grandmaison EW, Goosen MFA, Applications of Chitin and Chitosan, M.F.A. Goosen, Ed., pp. 3-29, Technomic Publishing Co., Lancaster (1997)
  17. Kim CH, Choi KS, J. Ind. Eng. Chem., 8(1), 71 (2002)
  18. Suzuki K, Tokoro A, Okawa Y, Suzuki S, Suzuki M, Chem. Pharm. Bull., 33, 886 (1985)
  19. Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I, Vaccine, 2, 93 (1984) 
  20. Allan GG, Altman LC, Bensiger DK, Ghosh Y, Hirabayashi Y, Neogi AN, Neogi S, Chitin, Chitosan and Related Enzymes, J.P. Zikakis, Ed., pp. 119-133, Academic Press, New York (1984)
  21. Park JW, Park MO, Park KK, Bull. Korean Chem. Soc., 5, 108 (1984)
  22. Koenigsbauer MJ, Pharm. Res., 11, 777 (1994)
  23. Breslauer KJ, Freire E, Straume M, Methods Enzymol., 211, 513 (1992)
  24. Wisniewski S, Kim SW, J. Membr. Sci., 6, 309 (1980)