Macromolecular Research, Vol.12, No.2, 172-177, April, 2004
Development of Lamellar Morphology in Poly(ethylene terephthalate)/Polycarbonate Blends
E-mail:
We have studied the lamellar-level morphology of poly(ethylene terephthalate) (PET)/polycarbonate (PC) blends using small-angle X-ray scattering (SAXS). Measurements were made as a function of the holding time in the melt. We determined the morphological parameters at the lamellar level by correlation function analysis of the SAXS data. An increased amorphous layer thickness was identified in the blend, indicating that some PC was incorporated into the interlamellar regions of PET during crystallization. The blend also exhibits a larger lamellar crystalline thickness (lc) than that of pure PET. A possible reason for the increase in lc is that the inclusion of the PC molecules in the interlamellar regions causes an increase in the surface free energy of folding. At the early stage of isothermal crystallization, we observed a rapid drop in the value of lc in the blend; this finding indicates that a relatively large fraction of secondary crystals form during the primary crystallization. In contrast, the value of lc for the sample that underwent a prolonged holding time increased with time in the secondary crystallization-dominant regime; this observation suggests that the disruption of chain periodicity, which results from transesterification between the two polymers, favors the development of fringed micellar crystals that have larger values of lc, rather than the development of normal chain-folded crystals.
Keywords:poly(ethylene terephthalate);polycarbonate;primary crystallization;secondary crystallization.
- Talibuddin S, Wu L, Runt J, Lin JS, Macromolecules, 29(23), 7527 (1996)
- Chen HL, Li LJ, Lin TL, Macromolecules, 31(7), 2255 (1998)
- Chen HL, Hsiao MS, Macromolecules, 31(19), 6579 (1998)
- Yeh F, Hsiao BS, Chu B, Sauer BB, Flexman EA, J. Polym. Sci. B: Polym. Phys., 37(21), 3115 (1999)
- Inaba N, Sato K, Suzuki S, Hashimoto T, Macromolecules, 19, 1690 (1986)
- Inaba N, Yamada T, Suzuki S, Hashimoto T, Macromolecules, 21, 407 (1988)
- Chen HL, Hwang JC, Yang JM, Wang RC, Polymer, 39(26), 6983 (1998)
- Nojima S, Sato K, Ashida T, Macromolecules, 24, 942 (1991)
- Okamoto M, Kotaka T, Polymer, 38(6), 1357 (1997)
- Bang HJ, Lee JK, Lee KH, J. Polym. Sci. B: Polym. Phys., 38(20), 2625 (2000)
- Lee JK, Im JE, Lee KH, Eur. Polym. J., submitted (2003)
- Garcia M, Eguiazabal JI, Nazabal J, J. Appl. Polym. Sci., 81(1), 121 (2001)
- Kong Y, Hay JN, Polymer, 43(6), 1805 (2002)
- Buchner S, Wiswe D, Zachmann HG, Polymer, 30, 480 (1989)
- Strobl GR, Schneider M, J. Polym. Sci. B: Polym. Phys., 18, 1343 (1980)
- Verma RK, Velikov V, Kander RG, Marand H, Chu B, Hsiao BS, Polymer, 37(24), 5357 (1996)
- Verma R, Marand H, Hsiao B, Macromolecules, 29(24), 7767 (1996)
- Wang W, Schultz JM, Hsiao BS, Macromolecules, 30(16), 4544 (1997)
- Lee JK, Bang HJ, Lee KH, J. Polym. Sci. B: Polym. Phys., 40(4), 317 (2002)
- Martuscelli E, Polym. Eng. Sci., 24, 563 (1984)
- Hsiao BS, Chang KY, Sauer BB, Polymer, 32, 27 (1991)
- Stein RS, Chu WJ, Polym. Sci. A-2, 8, 1137 (1970)
- Yoon DY, Stein RS, J. Polym. Sci. B: Polym. Phys., 12, 763 (1974)
- Lilaonitkul A, West JC, Cooper SL, J. Macromol. Sci.-Phys., B12, 563 (1976)
- Matsuo M, Geshi K, Moriyama A, Sawatari C, Macromolecules, 15, 193 (1982)
- Elsner G, Zachmann HG, Milch JR, Makromol. Chem., 182, 657 (1981)
- Jonas AM, Russell TP, Yoon DY, Macromolecules, 28, 8491 (1993)
- Kruger KN, Zachmann HG, Macromolecules, 26, 5202 (1993)
- Phillips RA, Wang ZG, Hsiao BS, ACS PMSE Proc., 79, 295 (1998)
- Alizadeh A, Richardson L, Xu J, McCartney S, Marand H, Macromolecules, 32(19), 6221 (1999)