화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.3, 354-359, May, 2004
기체-고체 나선흐름(Swirling) 유동층에서 기체의 혼합 및 압력 요동 특성
Characteristics of Gas Mixing and Pressure Fluctuations in Gas-Solid Swirling Fluidized Beds
E-mail:
초록
직경이 0.102 m이고 높이가 2.5 m인 기체-고체 유동층에서 흐름영역, 체류시간 그리고 축 방향 분산 등과 같은 기상의 흐름 거동을 제어하기 위해 기체의 소용돌이 나선흐름 운동(swirling motion)을 도입하였다. 유동층에서 기체-고체 흐름영역의 전이를 확인하고자 압력 요동을 측정하여 해석하였으며, 유동층에 유입되는 기체의 나선흐름비와 기체 유속이 기상의 흐름영역, 체류시간 그리고 축 방향 혼합 등에 미치는 영향을 고찰하였다. 나선흐름 유동층에서 기체-고체의 흐름영역은 압력요동의 표준편차와 Kolmogorov 엔트로피의 변화에 의해 구별되었으며, 반응기 층내에서 기상의 나선흐름은 기상의 혼합과 평균체류시간을 효과적으로 증가시켰다. 나선흐름 기체-고체 유동층에서 기상의 축방향 분산계수는 조작변수의 무차원군 함수관계로 나타낼 수 있었다.
Swirling flow motion of gas phase was employed to control the flow behavior of gas phase such as flow regime, residence time distribution and axial dispersion in a gas-solid fluidized bed of 0.102 m ID and 2.5 m in height. Pressure fluctuations were measured and analyzed to identify the flow regime in the beds. Effects of swirling gas ratio and gas velocity on the flow regime, residence time distribution and axial mixing of gas phase were examined. It was found that the flow regime of gas-solid flow in the swirling fluidized bed can be detected by means of variation of standard deviation and Kolmogorov entropy of pressure fluctuations. The mixing and mean value of residence time of gas phase in the bed increased effectively due to the swirling flow of gas phase in the beds. The axial dispersion coefficient of gas phase was well correlated in terms of dimensionless groups as a function of operating variables.
  1. Horio M, Ishii H, Nishimuro M, Powder Technol., 70, 229 (1992) 
  2. Lee CG, Cho YJ, Song PS, Kang Y, Kim JS, Choi MJ, Catal. Today, 79(1-4), 453 (2003) 
  3. Amand LE, Ledener B, Emissions of Nitrogen Oxide from a Circulating Fluidized Bed Boiler-The Influence of Design Parameters, in CFB Technology II; P. Basu and J.F. Large, Ed., Pergamon Press, N.Y., 457 (1988)
  4. Sreenivasan B, Raghavan VR, Chem. Eng. Process., 41(2), 99 (2002) 
  5. Kang Y, Song PS, Yun JS, Jeong YY, Kim SD, Chem. Eng. Commun., 177, 31 (2000)
  6. Ljungdahl B, Larfeldt J, Powder Technol., 120(1-2), 55 (2001) 
  7. Zhang J, Nieh S, Powder Technol., 112(1-2), 70 (2000) 
  8. Kang SH, Characteristics of Hydrodynamic and Heat Transport in a Pressurized Fluidized Bed, Ph.D. Thesis, Chungnam National University, Korea (2003)
  9. Grassberger P, Procaccia I, Phys. Rev., A, 28, 2591 (1983) 
  10. Kang Y, Yoo YT, Kim SD, HWAHAK KONGHAK, 19(4), 291 (1981)
  11. Ryu HJ, Choi JH, Kim SD, Son JE, HWAHAK KONGHAK, 39(5), 579 (2001)
  12. vandenBleek CM, Shouten JC, Chem. Eng. J., 53, 75 (1993)
  13. Daw CS, Halow JS, AIChE Symp. Ser., 89, 103 (1993)
  14. Vasudevan M, Finney CEA, Nguyen K, vanGoor NA, Bruns DD, Daw CS, Fluid. Bed Combustion ASME, 2, 1001 (1995)
  15. Schouten JC, Vanderstappen ML, Vandenbleek CM, Chem. Eng. Sci., 51(10), 1991 (1996) 
  16. Zijerveld RC, Johnsson F, Marzocchella A, Schouten JC, van den Bleek CM, Powder Technol., 95(3), 185 (1998) 
  17. Shin KS, Lee CG, Kang SH, Kang Y, Kim SD, Kim SJ, J. Korean Ind. Eng. Chem., 14(7), 896 (2003)
  18. Kang SH, Kang Y, Han KH, Jin GT, J. Korean Ind. Eng. Chem., 14(6), 831 (2003)
  19. Foka M, Chaouki J, Guy C, Klvana D, Chem. Eng. Sci., 62, 713 (1996)