화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.10, No.4, 582-591, July, 2004
Comparative Study of Zeolite-Filled LLDPE and HDPE Composite Films
E-mail:
A comparative study of zeolite-filled LLDPE and HDPE composite films has been performed in terms of the filler dispersion, morphology, and the mechanical, rheological, and impact properties. The SEM morphology showed a good dispersion and adhesion of the filled zeolite in the LLDPE and HDPE systems. The HDPE/zeolite composite presents the higher draw ratio and aspect ratio, and has a larger number and bigger area of air holes than appear in the LLDPE system, which shows the most effective composition for diaper applications with a 40 wt% zeolite loading at a 300% draw ratio. The tensile and yield stress increased with the zeolite content in the LLDPE system, but the inverse behavior was observed in the HDPE system. The Young's Modulus gradually increased, whereas the elongation at break was constant up to a certain draw ratio, but decreased at high contents of zeolite in both the LLDPE and HDPE systems. The impact properties of the LLDPE composite improved at up to 40% zeolite content, but they decreased in the HDPE system, implying a weak interfacial interaction in the HDPE system. Morphological observations strongly support the differences in the mechanical properties between the LLDPE and HDPE systems. Based on various properties, zeolites can be good candidates for fillers in each LLDPE and HDPE system for particular purposes.
  1. Hale WR, Dohrer KK, Tant MR, Sand ID, Colloids Surf. A: Physicochem. Eng. Asp., 187, 483 (2001)
  2. Nielsen LE, Landel RF, Mechanical Properties of Polymers and Composites, 2nd Edn., Dekker, New York (1994)
  3. Verbeek CJR, Mater. Lett., 52, 453 (2002)
  4. Bai SL, Chen JK, Huang ZP, Liu ZD, Polym. Int., 50, 222 (2001)
  5. Wang GL, Jiang PK, Zhu ZK, Yin J, J. Appl. Polym. Sci., 85(12), 2485 (2002)
  6. Kocsis-Karger J, Polypropylene Structure, Blends and Composites, 1st Edn., Chapman & Hall, London (1995)
  7. Bigg DM, Polym. Compos., 8, 115 (1987)
  8. Chacko VP, Farris RJ, Karasz FE, J. Appl. Polym. Sci., 28, 2701 (1983)
  9. Albano C, Gonzalez J, Ichazo M, Rosales C, de Navarro CU, Parra C, Compos. Struct., 48, 49 (2000)
  10. Schrager M, J. Appl. Polym. Sci., 22, 2379 (1978)
  11. Tavman IH, J. Appl. Polym. Sci., 62(12), 2161 (1996)
  12. Ghosh K, Maiti SN, J. Appl. Polym. Sci., 60(3), 323 (1996)
  13. Mihai R, Nicoleta S, Daniela R, Polym. Test., 20, 409 (2001) 
  14. Maiti SN, Mahapatro PK, Polym. Compos., 9, 291 (1998)
  15. Tavman IH, Powder Technol., 91(1), 63 (1997)
  16. Maiti SN, Mahapatro PK, Polym. Compos., 11, 223 (1990)
  17. Maiti SN, Mahapatro PK, Polym. Compos., 13, 47 (1992)
  18. Martuscelli E, Palumbo R, Kryszewski M, Polymer Blends, 1st edn., Plenum, NY (1979)
  19. Mareri P, Bastide S, Binda N, Crespy A, Compos. Sci. Technol., 58, 747 (1998)
  20. Rozman HZ, Lai CY, Ismail H, Ishakmohd ZA, Polym. Int., 49, 1273 (2000)
  21. Bekkum HV, Flanigen EM, Jacobs PA, Jansen JC, Introduction to Zeolite Science and Practice, 2nd edn., Elsevier Science, Amsterdam (2001)
  22. Kwon S, Kim KJ, Kim H, Kundu PP, Kim TJ, Lee YK, Lee BH, Choe S, Polymer, 43(25), 6901 (2002)
  23. Kim H, Kim KJ, Kwon SM, Kundu PP, Jo BC, Lee BH, Lee DS, Choe SJ, J. Appl. Polym. Sci., 86(8), 2041 (2002)
  24. Kim KJ, Kwon S, Kim H, Kundu PP, Kim YW, Lee YK, Lee KJ, Lee BH, Choe S, J. Appl. Polym. Sci., 87(2), 311 (2003)
  25. Upadhyay RD, Kale DD, J. Appl. Polym. Sci., 81(9), 2297 (2001)
  26. Kim H, Jagannath B, Choi HH, Kim GJ, Lee DS, Choe S, J. Ind. Eng. Chem., 9(6), 655 (2003)
  27. Lee YJ, Shim JM, Kim WS, Mater. Chem. Phys., 48, 36 (1997)
  28. Ozmihci F, Balkose D, Ulku S, J. Appl. Polym. Sci., 82(12), 2913 (2001)
  29. Adnadjevic B, Jovanovic J, J. Appl. Polym. Sci., 77(6), 1171 (2000)