Journal of Power Sources, Vol.129, No.1, 62-67, 2004
Materials and design development for bipolar/end plates in fuel cells
Bipolar/end plate is one of the most important and costliest components of the fuel cell stack and accounts to more than 80% of the total weight of the stack. In the present work, we focus on the development of alternative materials and design concepts for these plates. A prototype one-cell polymer electrolyte membrane (PEM) fuel cell stack made out of SS-316 bipolar/end plate was fabricated and assembled. The use of porous material in the gas flow-field of bipolar/end plates was proposed, and the performance of these was compared to the conventional channel type of design. Three different porous materials were investigated, viz. Ni-Cr metal foam (50 PPI), SS-316 metal foam (20 PPI), and the carbon cloth. It was seen that the performance of fuel cell with Ni-Cr metal foam was highest, and decreased in the order SS-316 metal foam, conventional multi-parallel flow-field channel design and carbon cloth. This trend was explained based on the effective permeability of the gas flow-field in the bipolar/end plates. The use of metal foams with low permeability values resulted in an increased pressure drop across the flow-field which enhanced the cell performance. (C) 2003 Elsevier B.V. All rights reserved.