화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.1, 32-37, February, 2000
순환식 중공사막 접촉기를 이용한 이산화탄소의 분리
Separation of Carbon Dioxide by Circulatory Hollow Fiber Membrane Contactor
E-mail:
초록
흡수모듈과 진공식 탈착모듈로 구성된 순환식 중공사막 접촉기에서 이산화탄소 흡수, 분리에 대한 다양한 시스템 변수들의 영향을 고찰하였다. 흡수제로는 화학적 및 물리적 흡수제로 각각 탄산칼륨과 순수물을 사용하여 이산화탄소와 흡수제간의 반응에 따른 분리거동을 고찰하였다. 기체는 이산화탄소와 질소의 혼합기체를 사용하였으며, 중공사막의 기공상태는 혼합기체와 흡수제의 적절한 압력조절을 통해 비젖음성 조건을 유지하였다. 흡수모듈에서 흡수제의 유속이 증가할수록 이산화탄소 흡수속도는 증가하였으며, 특히 흡수제가 순수물인 경우에 비해 탄산칼륨일 때 크게 증가하는 경향을 보였다. 또한 혼합기체의 유속이 증가함에 따라 이산화탄소의 흡수속도 역시 증가하였다. 탈착모듈에서 진공도가 증가할수록 이산화탄소의 탈착속도는 증가하였으며, 탈착모듈로 유입되는 흡수제의 유속이 증가함에 따라 약간 증가하는 경향을 관찰할 수 있었다.
The effects of various system parameters on the absorption and desorption of carbon dioxide into the absorbent liquid were investigated in a circulatory hollow fiber membrane contactor with absorption and vacuum mode desorption modules. An aqueous potassium carbonate solution was used as a chemical absorbent and its permeation results were compared to those obtained with pure water as a physical absorption in order to figure out the effect of chemical reaction. The mixture of caron dioxide and nitrogen was used as an feed gas, and the pore condition of hollow fiber membrane was hold to be non-wetted through an appropriate control of pressures of the mixture gas and the absorbent. The permeation rate of carbon dioxide was increased with the increment of the flow rate of the absorbent in the absorption module. Particularly, in the case of an aqueous potassium carbonate solution used as an absorbent, the permeation rate of carbon dioxide was higher than that in pure water. The permeation rate was increased with the increments of the flow rate of mixture gas. The desorption rate of carbon dioxide was increased with the increment of the vacuum degree in the desorption module, and the absorbent flow rate for the desorption module.
  1. Chun MS, Lee KH, Sep. Sci. Technol., 32(15), 2445 (1997)
  2. Yi GR, Ko JS, Yang SM, HWAHAK KONGHAK, 36(3), 453 (1998)
  3. Kreulen H, Smolders CA, Versteeg GF, van Swaaij WP, J. Membr. Sci., 78, 197 (1993) 
  4. Yang MC, Cussler EL, AIChE J., 32, 1910 (1986) 
  5. Park SW, Suh DS, Hwang KS, Kumazawa H, Korean J. Chem. Eng., 14(4), 285 (1997)
  6. Karoor S, Ph.D. Dissertation, Stevens Institute of Technology, U.S.A. (1992)
  7. Teramoto M, Matusyama T, Yamashiro T, Okamoto S, J. Membr. Sci., 45, 115 (1989) 
  8. Shelekhin AB, Beckman IN, J. Membr. Sci., 73, 73 (1992) 
  9. Chun MS, Lee KH, Membrane J., 5(1), 35 (1995)
  10. Yeom BY, Kim M, Lee Y, Park YI, Lee KH, HWAHAK KONGHAK, 36(5), 720 (1998)
  11. Lee Y, Yeom BY, Lee Y, Park YI, Lee KH, HWAHAK KONGHAK, 36(5), 726 (1998)