화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.1, 53-61, February, 2000
IEA-CFBC 모델을 이용한 동해화력 순환유동층 연소로의 성능모사 -사이클론 성능변화에 따른 순환유동층 연소로의 성능모사-
Simulation of the Tonghae Thermal Power Plant CFB by using IEA-CFBC Model -Determination of the CFB Combustor Performance with Cyclone Modification-
E-mail:
초록
동해화력 순환유동층 보일러는 200 MWe 규모로써 국내 무연탄을 사용하는 최대 규모의 발전설비이며, 현재 1호기가 상업운전중에 있으며, 2호기가 ''99년 10월에 준공을 목표로 건설중에 있다. 현재 상업운전중에 있는 동해화력 순환유동층 보일러는 사이클론 개조에 따른 운전 안정화 및 운전 최적화를 수행중에 있으나, 최대 규모의 무연탄용 순환유동층에 대한 운전자로는 거의 알려진 바가 없어, 이에 대한 예측이 필요하다. 이에 본 연구에서는 IEA-CFBC 모델을 이용하여 동해화력 순환유동층의 성능을 모사할 수 있는 시뮬레이션 틀을 개발하였으며, 이를 이용하여 사이클론 효율 변화에 따른 순환유동층 성능 변호를 예측하였다. 또한 사이클론 개조시 사이클론의 성능 변화 및 재순환량, 그리고 미포집 입자량 등을 예측하여 개조에 따른 성능 향상을 결정하였다. 본 연구결과 동해화력 사이클론의 성능은 약 9807% 정도로 나타났으며, 사이클론 효율이 증가함에 따라 로내 상부차압이 증가하는 경향을 그리고 freeboard의 온도가 점차 낮아져 안정화되는 것으로 나타났다. 이러한 사이클론 효율의 상승을 위해 사이클론 vortex finder 및 입구 단면적 개조를 수행할 경우, 순환유동층 성능 향상이 기대되는 것으로 예측되었다.
The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite coal for generation of electric power. The #1-unit CFB boiler has been operated commercially since October 1998, and the #2-unit CFB boiler, of which commercial operation will be achieved at October 1999, is under construction. The optimization and stabilization of the CFB operation have been carried out through the modification of the cyclones for the units of #1 and #2. However the operation data for the large CFB combustor firing the anthracite coal are few, so it is necessary to predict the performance of the CFBC with variation of operation conditions. Therefore, in this study, the development of the simulation scheme has been achieved by using IEA(International Energy Agency)-CFBC model, and the performance of the CFB combustor with variation of the cyclone efficiency has been determined. The improved performance of the modified cyclone, which have been carried out by increase of the vortex finder length and by decrease of the cross sectional area of the cyclone inlet, also has been determined. The cyclone efficiency has been evaluated 98.7%. As the cyclone efficiency increases, the upper differential pressure increases and the freeboard temperature becomes to be low and stable. The modifications of vortex finder and inlet duct of the cyclone have been predicted to improve the performance of the CFB combustor.
  1. Heinbockel I, Ph.D. Dissertation, Siegen University, Germany (1995)
  2. Zhang L, Li TD, Zhen QY, Lu CD, 11th Int. Conf. on FBC, Montreal, Canada, 1289 (1991)
  3. Xu X, Mao J, Proc. 4th Int. Conf. on CFB, Somerset, PA, USA, 104 (1993)
  4. Lin X, Li Y, Proc. 4th Int. Conf. on CFB, Somerset, PA, USA, 547 (1993)
  5. Halder PK, Datta A, Proc. 4th Int. Conf. on CFB, Somerset, PA, USA, 696 (1993)
  6. Saraiva PC, Azevedo JLT, Cavalho MG, 12th Int. Conf. on FBC, San Diego, CA, USA, 375 (1993)
  7. Hypannen T, Lee YY, Ketunen A, Riiali J, 12th Int. Conf. on FBC, San Diego, CA, USA, 1121 (1993)
  8. Mori S, Narukawo K, Yamada I, Takebayashi T, Tanii H, Tomoyasu Y, Mii T, 11th Int. Conf. on FBC, Montreal, Canada, 1261 (1991)
  9. Sengupta SP, Basu P, 11th Int. Conf. on FBC, Montreal, Canada, 1295 (1991)
  10. Hannes JP, van den Bleek CM, Renz U, Proceedings of the 13th Int. Cong. on FBC, Orlando, FL, USA, 287 (1995)
  11. Prichett JW, Blake TR, Garg SK, AIChE Symp. Ser., 74, 134 (1978)
  12. Balzer G, Simonin O, Proc. 5th Int. Symp. on Refined Flow Modelling and Turbulence Measurements, Paris, France (1993)
  13. Hannes JP, Ph.D. Dissertation, Delft University of Technology, The Netherlands (1996)
  14. Wen CY, Chen LH, AIChE J., 28, 117 (1982) 
  15. Rhodes M, Powder Technol., 53, 155 (1987) 
  16. Kunii D, Levenspiel O, "Fluidization Engineering," Robert E. Krieger Publishing Company, Huntington, New York (1977)
  17. Davidson JF, Harrison D, "Fluidized Particles," Cambridge University Press, New York (1963)
  18. Johnsson F, Anderson S, Leckner B, Powder Technol., 68, 117 (1991) 
  19. Darton RC, LaNauze RD, Davidson JF, Harrisson D, TransIChemE, 55 (1977)
  20. Kruse M, Hartge EU, Werther J, Powder Technol., 70, 293 (1992) 
  21. Merrick D, Fuel, 62, 534 (1983) 
  22. Field MA, Gill DW, Morgan RB, Hawksley PGW, "Combustion of Pulverized Coal," British Coal Utilization Research Association, Great Britain (1967)
  23. Schouten JC, van den Bleek CM, Chem. Eng. Sci., 43, 2051 (1988) 
  24. Wolff EHP, Ph.D. Dissertation, TU-Delft University, The Netherlands (1991)
  25. Johnsson JE, Presented at the 21th IEA-AFBC Meeting in Beograd (1990)
  26. Hautman DJ, Dryer FL, Schug KP, Glasman I, Combust. Sci. Technol., 25, 219 (1981)
  27. Wirth KE, Chem. Eng. Sci., 50(13), 2137 (1995) 
  28. Shun D, Bae DH, Han KH, Son JE, Kang Y, Wee YH, Lee JS, Ji PS, HWAHAK KONGHAK, 34(3), 321 (1996)
  29. Lee JM, Kim JS, Proceedings of the 6th Asian Conference on Fluidized-Bed and Three-Phase Reactor, CheJu Island, Korea, 501 (1998)
  30. Cheliand PK, Gamble R, "Fluidized Bed Combustion Volume-1," ASME, 535 (1995)
  31. Jones PA, Syngle DV, Sinn BT, "Fluidized Bed Combustion Volume-2," ASME, 1211 (1995)