Langmuir, Vol.20, No.3, 898-905, 2004
Membrane surface dynamics of DNA-threaded nanopores revealed by simultaneous single-molecule optical and ensemble electrical recording
We describe a method for simultaneous single-molecule optical and electrical characterization of membrane-based sensors that contain ion-channel nanopores. The technique is used to study the specific and nonspecific interactions of streptavidin-capped DNA polymers with lipid bilayers composed of diphytanoyl phosphatidylcholine and diphytanoyl phosphatidylglycerol. Biotinylated DNA that is bound to fluorescently labeled streptavidin is electrophoretically driven into, or away from, the lumen of alpha hemolysin (alphaHL) ion channels by an external electric field. Confocal microscopy simultaneously captures single-molecule fluorescence dynamics from the membrane interface at different applied potentials. Fluorescence correlation analysis is used to determine the surface number density and diffusion constant of membrane-associated complexes. The dual optical and electrical approach can detect membrane-associated species at a surface coverage below 10(-5) monolayers of streptavidin, a sensitivity that surpasses most other in vitro surface analysis techniques. By comparing the change in transmembrane current to the number of fluorescent molecules leaving the bilayer when the electrical potential is reversed, we demonstrate the general utility of the approach within the context of nanopore-based sensing and discuss a mechanism by which DNA-streptavidin complexes can be nonspecifically retained at the membrane interface.