Langmuir, Vol.20, No.8, 3388-3397, 2004
Surface properties of porous carbon obtained from polystyrene sulfonic acid-based organic salts
Pyrolysis of polysterene sulfonic acid-co-maleic acid salts at 800 degreesC resulted in formation of new materials consisting of porous carbon and metal species dispersed on the surface. After hydrochloric acid treatment, the metal oxides/salts were removed. Obtained materials were characterized using adsorption of nitrogen, thermogravimetric analysis, Raman spectroscopy, and scanning electron microscopy with energy dispersive analysis of X-rays. The results showed highly developed porous structures in the range of micro- and mesopores. The porous features of new materials resemble those characteristics for carbon foams. The differences in the porous structure are linked to the type of transition metal used for the modification of the initial polymer and the chelation process. Macro- and mesopores are spherical/cylindrical in shape, and they are likely formed when release of pyrolysis gases, such as CO2, NO2, SO2, H2S, and CxHy, occurs. Moreover, reduction of metal, its migration to the surface, and agglomeration contribute to development of porosity. Depending on the reactivity of the metal used for cation exchange (Fe, Co, or Ni) either sulfides (nickel and cobalt) or oxides (cobalt and iron) are formed on the carbon surface.