화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.1, 117-121, February, 2000
황화된 다공성 아연계 흡착제의 산화적 재생반응에 관한 연구
A Study on Oxidative Regeneration of Sulfided Porous Zinc-Based Sorbents
E-mail:
초록
석탄유도 가스중에 포함된 황화수소 제거용 흡착제를 개발할 목적으로 산화아연에 CaO, Li2O, TiO2와 같은 금속산화물을 소량 첨가하여 다공성 흡착제를 제조하였으며, 이 흡착제들의 산화적 재생반응에 대한 반응특성과 속도론적 고찰을 수행하였다. 600-700℃의 온도구간에서 반응온도가 증가함에 따라 모든 흡착제들의 반응초기속도가 증가함을 알 수 있었으며, 100ml/min 이상인 영역에서는 반응기체의 유량에 따른 영향을 무시할 수 있었다. 첨가물이 재생성에 미치는 효과를 살펴본 결과, 2.0 at%의 TiO2를 첨가한 경우만 기본흡착제인 산화아연의 반응속도를 증진시킨 것으로 나타났다. 본 연구의 산화반응으로부터 얻은 실험값들은 Avrami 식과 잘 일치하였고 황화시킨 순수 산화아연 흡착제의 산화반응에 대한 활성화에너지는 54.06 kJ/mol 이었으며, 반응속도상수는 k=2.07×1012 exp(-27170/T)임을 확인하였다.
In order to develop sorbents for the removal of hydrogen sulfide contained in coal-derived gas, additives such as CaO, Li2O and TiO2, were added to zinc oxide and the reactivity and kinetics of the oxidative regeneration for the sulfided porous zinc-based sorbents were examined. At 600-700℃ the initial reaction rate of these sorbents increased with increasing the reaction temperature and the effect of total gas flow rate on the reaction above 100ml/min showed similar behavior. Also it was revealed that only the 2.0 at% TiO2-doped ZnO sorbent promoted oxidation rate of pure zinc sulfide from the investigation of the effect of additive on regeneration. In this study Avrami equation was appropriate to interpret the kinetic data obtained from oxidation. The oxidation rate constant was expressed as k=2.07×1012exp(-27170/T) and the activation energy of oxidation was 54.06kJ/mol.
  1. Tamhankar SS, Bagajewicz GR, Gavalas GR, Sharma PK, Stephanopoulos MF, Ind. Eng. Chem. Proc. Des. Dev., 25(2), 429 (1986) 
  2. Lee YS, Kim HT, Yoo KO, Ind. Eng. Chem. Res., 34(4), 1181 (1995) 
  3. Choi YJ, Lee YS, Kim HT, Yoo KO, HWAHAK KONGHAK, 30(4), 433 (1992)
  4. Lee YS, Yoo KO, HWAHAK KONGHAK, 31(6), 753 (1993)
  5. Lee YS, Yoo KO, Gavalas GR, Korean J. Chem. Eng., 8(4), 214 (1991)
  6. Pineda M, Fierro JLG, Palacios JM, Cilleruelo C, Ibarra JV, Can. J. Chem. Eng., 30(24), 6171 (1995)
  7. Kim KS, Park NK, Lee TJ, J. Korean Ind. Eng. Chem., 8(1), 122 (1997)
  8. Kang SH, Rhee YW, Kang Y, Han KH, Lee CK, Jin GT, HWAHAK KONGHAK, 35(5), 642 (1997)
  9. Yi CK, Park J, Cho SH, Jin GT, Son JE, HWAHAK KONGHAK, 37(1), 81 (1999)
  10. Lee TJ, Park NK, Kim JH, Kim KS, Park YW, Yi CK, HWAHAK KONGHAK, 34(4), 435 (1996)
  11. Shin SB, Yoon YI, Kim SH, HWAHAK KONGHAK, 36(5), 687 (1998)
  12. Sa LN, Focht GD, Ranade PV, Harrison DP, Chem. Eng. Sci., 44(2), 215 (1989) 
  13. Yoo KO, Research Institute of Industrial Science Research Reports, Hanyang Univ., Seoul, Korea, 25, 245 (1987)
  14. Lee JB, Ph.D. Dissertation, Hanyang Univ., Seoul, Korea (1991)
  15. Park DH, Lee YS, Kim HT, Yoo KO, HWAHAK KONGHAK, 30(6), 700 (1992)
  16. Lee YS, Yoo KO, HWAHAK KONGHAK, 32(3), 506 (1994)
  17. Lee YS, Park DH, Kim HT, Yoo KO, HWAHAK KONGHAK, 32(4), 572 (1994)
  18. Lee YS, Park DH, Kim HT, Yoo KO, Korean J. Chem. Eng., 12(1), 23 (1995)
  19. Lee YS, Kim DS, Kim KH, Kim HT, Yoo KO, Korean J. Chem. Eng., 13(4), 427 (1996)
  20. Sohn HY, Kim D, Metall. Trans. B, 18, 451 (1987)
  21. Sohn HY, Kim D, Metall. Trans. B, 18, 727 (1987)
  22. Dalai AK, Tollefson EL, Can. J. Chem. Eng., 76(5), 902 (1998)
  23. Avrami M, J. Chem. Phys., 7, 1103 (1939) 
  24. Avrami M, J. Chem. Phys., 8, 212 (1940) 
  25. Avrami M, J. Chem. Phys., 9, 177 (1941)