화학공학소재연구정보센터
Journal of Chemical Physics, Vol.120, No.4, 1990-1996, 2004
Optical control over photoconductivity in polyferrocenylsilane films
We report the study and elucidate the origin of the photoconductivity of polyferrocenylsilanes achieved through photooxidation performed by ultraviolet irradiation in the presence of chloroform. The persistence over months of the changes in the optoelectronic properties allowed more detailed studies of the charge photogeneration process. The photocurrent spectrum mimics that of the absorption indicating that the photooxidized material is not a mechanical mixture of oxidized and unoxidized polymer units. Photomodulation spectroscopy revealed the existence of long-lived photoexcited states with a lifetime in the millisecond range. They have been interpreted as trapped excitons at the oxidized sites where the polymer is deformed due to the presence of the chloroform derived counter ions. Because of the relatively long lifetime of the trapped excitons they can dissociate and the formed charge carriers can be separated in an externally applied electric field. The effect of the polymer chain deformation around the oxidized unit extends over the neighboring polymer units. In light of the potential applications of this class of polymers in various electronic and photonic devices, the clarification of such a basic process as the photocurrent generation will be a key factor for further technological development. (C) 2004 American Institute of Physics.