Journal of Chemical Physics, Vol.120, No.10, 4696-4704, 2004
Bond-selective photodissociation of partially deuterated ammonia molecules: Photodissociations of vibrationally excited NHD2 in the 5 nu(NH) state and NH2D in the 5 nu(ND) state
Ultraviolet photodissociation of NHD2 excited to the fourth overtone state of the NH stretching mode (5nu(NH)) and NH2D excited to that of the ND stretching mode (5nu(ND)) has been investigated by using a crossed laser and molecular beams method. Branching ratio between the NH and ND bond dissociations has been determined by utilizing a (2+1) resonance enhanced multiphoton ionization scheme of H and D atoms. For the photolysis of NHD2 in the 5nu(NH) state, the NH dissociation cross section is 5.1+/-1.4 times as large as the ND dissociation cross section per bond. On the other hand, for the photolysis of NH2D in the 5nu(ND) state, the ratio of the NH dissociation cross section per bond to the ND dissociation cross section decreases to 0.68+/-0.16. In comparison with the branching ratios for the photolysis of vibrationally unexcited NH2D and NHD2 [Koda and Back, Can. J. Chem. 55, 1380 (1977)], the present results indicate that the excitation of the NH stretching mode enhances the NH dissociation with ca. two times larger NH/ND branching ratio, whereas the excitation of the ND stretching mode results in the preferential ND dissociation with ca. 3-4 times larger ND/NH branching ratio than that for the vibrational ground states. The mechanism of the bond-selective enhancement has been discussed in terms of the energetics and dynamics of wave packet. (C) 2004 American Institute of Physics.