화학공학소재연구정보센터
Journal of Chemical Physics, Vol.120, No.10, 4958-4968, 2004
Hybridization dynamics of surface immobilized DNA
We model the hybridization kinetics of surface attached DNA oligomers with solubilized targets. Using both master equation and rate equation formalisms, we show that, for surface coverages at which the surface immobilized molecules interact, barriers to penetration create a distribution of target molecule concentrations within the adsorbed layer. By approximately enumerating probe and target conformations, we estimate the probability of overlap between complementary probe and target regions as a function of probe density and chain length. In agreement with experiments, we find that as probe molecules interact more strongly, fewer nucleation sites become accessible and binding rates are diminished relative to those in solution. Nucleation sites near the grafted end of the probes are least accessible; thus targets which preferentially bind to this region show more drastic rate reductions than those that bind near the free end of the probe. The implications of these results for DNA-based biosensors are discussed. (C) 2004 American Institute of Physics.