Journal of the American Chemical Society, Vol.126, No.4, 1102-1109, 2004
Toward a new genetic system with expanded dimensions: Size-expanded analogues of deoxyadenosine and thymidine
We describe the design, preparation, and properties of two key building blocks of a size-expanded genetic system. Nucleoside analogues of the natural nucleosides dA and dT are reported in which the fusion of a benzo ring increases their size by ca. 2.4 Angstrom. The expanded dA analogue (dxA), having a tricyclic base, was first reported by Leonard nearly three decades ago. We describe a shortened and more efficient approach to this compound. The expanded dT analogue (dxT), a methylquinazolinedione C-glycoside, was previously unknown; we describe its preparation in eight steps from 5-methylanthranilic acid. The key glycoside bond formation employed Pd-mediated coupling of an aryl iodide precursor with a dihydrofuran derivative of deoxyribose. Both nucleosides are shown to be efficient fluorophores, emitting light in the blue-violet range. The base-protected phosphoramidite derivatives were prepared, and short oligonucleotides containing them were characterized. The two size-expanded nuclecisides are key components of a new four-base genetic system designed to form helical paired structures having a diameter greater than that of natural DNA. Elements of the design of this expanded genetic molecule, termed xDNA, are discussed, including the possibility of up to eight base pairs of information storage capability.