화학공학소재연구정보센터
Journal of Materials Science, Vol.39, No.7, 2315-2325, 2004
Atomistic simulations of the solubilization of single-walled carbon nanotubes in toluene
Solubilization of the armchair, metallic (10,10) single-walled carbon nanotubes (SWCNTs) in toluene is modeled using molecular dynamics simulations. Inter- and intra-molecular atomic interactions in the SWCNT + toluene system are represented using COMPASS (Condensed-phased Optimized Molecular Potential for Atomistic Simulation Studies), the first ab initio forcefield that enables an accurate and simultaneous prediction of various gas-phase and condensed-phase properties of organic and inorganic materials. The results obtained show that due to a significant drop in the configurational entropy of toluene, the solvation Gibbs free energy for these nanotubes in toluene is small but positive suggesting that a suspension of these nanotubes in toluene is not stable and that the nanotubes would fall out of the solution. This prediction is consistent with experimental observations. (C) 2004 Kluwer Academic Publishers.