Journal of Colloid and Interface Science, Vol.275, No.1, 257-263, 2004
Investigation of the effects of Au-colloid modification on cobalt hexacyanoferrate film growth and mass transport by electrochemical quartz crystal microbalance
The growth of cobalt hexacyanoferrate (CoHCF) films on bare and Au-colloid-modified electrodes in nitrate or sulfate solutions was monitored by electrochemical quartz crystal microbalance. The average efficiency of CoHCF film growth for Au colloid modified electrodes is 23 and 12 ng cm(-2) s(-1) in KNO3 and K2SO4 solutions, respectively, while those values for the bare gold electrode are 15 and 9 ng cm(-2) s(-1), respectively. In K2SO4 solution, the apparent molar masses for the Au-colloid-modified electrode at lower and higher potential is 58.4 and 37.3 g mol(-1), respectively, which is larger than those for the bare gold electrode (51.7 and 26.3 g mol(-1), respectively). The respective results were also obtained in KNO3 solution. Furthermore, the difference of the apparent molar masses at lower and higher potential for Au-colloid-modified electrodes is smaller than that for bare gold electrodes in the same electrolyte. Additionally, the mechanism of charge propagation is dependent on different anions in electrolyte solutions at higher potentials where the second redox reaction of CoHCF occurs. Therefore, the existence of Au colloids can accelerate CoHCF film growth and weaken the effect of anions on mass transport. (C) 2004 Elsevier Inc. All rights reserved.
Keywords:electrochemical quartz crystal microbalance;Au-colloid;cobalt hexacyanoferrate;mass transport