Journal of the American Chemical Society, Vol.126, No.18, 5906-5919, 2004
Gas-phase hydrogen/deuterium exchange and conformations of deprotonated flavonoids and gas-phase acidities of flavonoids
Gas-phase hydrogen/deuterium (H/D) exchange was used to probe the conformations, gas-phase acidities, and sites of deprotonation of isomeric flavonoid aglycons and glycosides. The flavonoids in each isomer series were differentiated on the basis of their relative rate constants and total numbers of exchanges. For example, flavonoids that possess neohesperidose-type disaccharides may undergo faster and far more extensive exchange than isomeric rutinoside flavonoids. The structural factors that promote or prevent H/D exchange were identified and correlated with collisionally activated dissociation (CAD) patterns and/or molecular modeling data (both high-level ab initio acidity calculations and conformational analysis with molecular dynamics (MD) simulations), thus providing a framework for the use of H/D exchange reactions in the structural elucidation of new flavonoids.