화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.126, No.22, 6886-6890, 2004
Electron spin dynamics in photoexcited diamagnetic and paramagnetic corroles
Three corroles, which differ by their cavity's core, namely, diamagnetic free-base tris(pentafluorophenyl)corrole and its gallium(III) complex and the paramagnetic oxo-chromium(V) complex, were studied by steady-state and time-resolved electron paramagnetic resonance (EPR) spectroscopy. The magnetic and orientational parameters of the corroles, oriented in a nematic liquid crystal, were determined and interpreted in terms of their structure, geometry, and excited states spin dynamics. It was shown that both diamagnetic corroles, photoexcited to their triplet states, exhibit similar EPR line shapes, which is characterized by a negative zero-field splitting parameter, D, whose origin is due to molecular "stretching". Photoexcited Cr(V)O-corrole exhibits polarized ground-state EPR spectrum in emission mode. This polarization stems from the sequence of photophysical and photochemical reactions, involving the formation of the trip-quartet/trip-doublet composite states and their selective quenching via a charge transfer state.