Langmuir, Vol.20, No.11, 4684-4689, 2004
Deposition of poly(styrene/alpha-tert-butoxy-omega-vinyl-benzyl-polyglycidol) microspheres on mica plates crossing the liquid-air interface: Formation of stripe pattern
Formation of stripelike assemblies of poly(styrene/alpha-tert-butoxy-omega-vinyl-benzyl-polyglycidol) microspheres adsorbed on nonpatterned mica plates moving perpendicularly from suspension of particles through the water-air interface has been observed. It was found that ordered assemblies were formed by capillary forces acting on particles crossing the water-air boundary. At sufficiently high rates of plate movement (i.e., at appropriate dynamic loading conditions) the adsorbed microspheres approaching the water surface begin sliding on the plate, due to capillary forces, in the direction opposite to the plate movement and are kept below the water surface. Plate movement brings new adsorbed particles to the water-air interface, where particles are assembled into aggregates. When particle aggregates are large, the capillary forces cannot overcome shearing forces and the particle assemblies are withdrawn on the plate above the water surface. This process repeated during continuous movement of the plate results in the formation of the quite regularly distributed stripes of adsorbed microspheres. Formation of the regularly distributed particle assemblies depends on concentration of microspheres in suspension.