화학공학소재연구정보센터
Macromolecules, Vol.37, No.12, 4676-4685, 2004
Computer simulation of the dynamics of neutral and charged dendrimers
Dynamic properties of dilute solutions of neutral and charged dendrimers with explicit excluded-volume, electrostatic, and hydrodynamic interactions have been investigated by Brownian dynamics simulation. Three different types of motions in dendrimers up to g = 5 generations have been considered: the motion of a dendrimer as a whole; the size and shape fluctuations (pulsations); the local reorientations of the individual monomers. The influence of the excluded-volume, electrostatic, and hydrodynamic interactions on these motions has been studied. The characteristic relaxation times have been compared with the theoretical predictions of the Rouse and Zimm models. The self-diffusion of a dendrimer can be described with the help of the preaveraged Zimm approach, and a dendrimer may be considered as an impenetrable sphere with the hydrodynamic radius R-h. For both neutral and charged dendrimers the hydrodynamic radius is smaller than the gyration radius R-g. The dynamics of the size fluctuations for a dendrimer with rigid spacers differs significantly from the theoretical predictions for a dendrimer with flexible spacers. The relaxation of these fluctuations is weakly sensitive to the presence of the hydrodynamic interactions, and the behavior of a dendrimer is close to that of an elastic body in a viscous medium. The local orientational mobility of individual monomers is significantly influenced by the ionization of the terminal groups.